Publications by authors named "Jilin He"

Deep mass spectrometry-based proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present a protocol for droplet-based one-pot preparation for proteomic samples (DROPPS), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. We describe steps for depositing cellular material, cell lysis, and digesting proteins in the same microliter-droplet well.

View Article and Find Full Text PDF

The microstructure and texture evolution of Cu-Ni-P alloy after cold rolling and annealing at 500 °C was studied by electron backscattering diffraction (EBSD). The equiaxed grain is elongated and the dislocation density increases gradually after cold rolling. The grain boundaries become blurred and the structure becomes banded when the reduction in cold rolling reaches 95%.

View Article and Find Full Text PDF

Electrochemical water splitting offers a most promising pathway for "green hydrogen" generation. Even so, it remains a struggle to improve the electrocatalytic performance of non-noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen-bridged cobalt-chromium (Co-O-Cr) dual-sites catalyst anchored on cobalt phosphide synthesized through MOF-mediation are proposed.

View Article and Find Full Text PDF

It is essential and challenging to develop advanced ceramic materials with thermal stability and high reflectivity for optical fields. Encouragingly, recent breakthroughs and significant advances in high-entropy ceramics have made high-entropy oxides a potential candidate material for optical applications. Therefore, in this study, we analyzed the effect of lattice distortion on the design of high-reflectivity, high-entropy oxides using first-principles calculations and aberration-corrected microscopy.

View Article and Find Full Text PDF

The efficient release of arsenic in copper smelting flue dust (CSFD) with complicated production conditions and composition under the premise of environmental safety is difficult for the copper smelting industry. The vacuum environment is conducive to the volatilization of low-boiling arsenic compounds, which is beneficial to the physical process and chemical reaction of increasing the volume. In the present study, combined with thermodynamic calculations, the roasting process of pyrite and CSFD mixed in proportion in vacuum was simulated.

View Article and Find Full Text PDF

Substoichiometric molybdenum oxide ceramics have aroused widespread interest owing to their promising optical and electrical performance. In this work, the thermal stability and decomposition mechanism of MoO and MoO at 700-1000 °C and 700-1100 °C were investigated, respectively. Based on this information, MoO (2 < x < 3) bulk ceramics were prepared by spark plasma sintering (SPS).

View Article and Find Full Text PDF

The application of carbides in catalysis, batteries, aerospace fields, etc. has been continuously expanded and deepened, which is attributed to the diversified physicochemical properties of carbides via a tune-up of their morphology, composition, and microstructure. The emergence of MAX phases and high entropy carbides with unparalleled application potential undoubtedly further stimulates the research upsurge of carbides.

View Article and Find Full Text PDF

In this work, three kinds of tungsten powders with different particle sizes were spheroidized by radio-frequency (RF) inductively coupled plasma spheroidization. The spheroidization behavior of these tungsten powders was investigated and compared. The spheroidization effects of irregular tungsten powder improves with the decrease in degree of agglomeration and increases with primary particle size.

View Article and Find Full Text PDF

A novel efficient reduction route was developed for preparing porous pellets to enhance mass transfer during magnesium production, which can improve the reactivity of pellet reaction to improve the reduction efficiency. A porous pellet precursor was prepared at 150 MPa using NHHCO as a pore-forming agent, and the reaction characteristics of the pellets with 0, 5%, 10%, 20%, and 30% pore-forming agents were measured under a high vacuum of approximately 10 Pa heat-treated from 100 °C to 1400 °C. The results showed that the instantaneous maximum reduction rate first increased and then decreased with the increase in pore-forming agents.

View Article and Find Full Text PDF

AS41 magnesium alloy possesses outstanding performance features such as light weight, high strength to toughness ratio and excellent heat resistance due to the addition of Si element, while traditional casting methods are prone to inducing large grain size and coarse MgSi phase. In this study, we first reported utilizing the selective laser melting (SLM) technique, fabricating AS41 samples and exploring the effect of laser energy densities on the metallurgical quality by characterizing and investigating the microstructure and mechanical properties. Results showed that the optimal laser energy density range was 60 to 100 J/mm.

View Article and Find Full Text PDF

Rock drilling robots are able to greatly reduce labor intensity and improve efficiency and quality in tunnel construction. However, due to the characteristics of the heavy load, large span, and multi-joints of the robot manipulator, the errors are diverse and non-linear, which pose challenges to the intelligent and high-precision control of the robot manipulator. In order to enhance the control accuracy, a hybrid positional error compensation method based on Radial Basis Function Network (RBFN) and Light Gradient Boosting Decision Tree (LightGBM) is proposed for the rock drilling robot.

View Article and Find Full Text PDF

1Cr13MoS is a kind of material with excellent corrosion resistance and good mechanical properties. Meanwhile, it also has good self-lubricating properties due to the presence of molybdenum disulfide phase inside the material and can be used as friction pair material in the pump. In this paper, the hardness, microstructure, distribution of the self-lubricating phase, friction and wear properties of 1Cr13MoS after heat treatment were studied.

View Article and Find Full Text PDF

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a powerful tool for bioconjugation of biomolecules, particularly proteins and peptides. The major drawback limiting the use of the CuAAC reaction in biological systems is the copper-mediated formation of reactive oxygen species (ROS), leading to the oxidative degradation of proteins or peptides. From the studies on a limited number of proteins and peptides, it is known that, in general, the copper mediated oxidative damage is associated with the copper coordination environment and solvent accessibility.

View Article and Find Full Text PDF

Using the model of broad and narrow way, the paper introduces a new approach in the explaining of a few basic concepts in the Morgan Law. The paper introduces a thorough inquiry into the applying condition of the three-factor crosses, and finds the source of the difference between the crossover frequency (F(C)) and recombination frequency (F(R)) of the non-adjacent factors in the three-factor crosses in Neurospora crassa.

View Article and Find Full Text PDF