Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite.
View Article and Find Full Text PDFEfforts to divert organics away from landfills are viewed by many as an important measure to significantly reduce the climate change impacts of municipal solid waste management. However, the actual greenhouse gas (GHG) impacts of organics diversion from landfills have yet to be thoroughly evaluated and whether such a diversion provides significant environmental benefits in terms of GHG impacts must be answered. This study, using California-specific information, aimed to analyse the GHG impacts of organics diversion through a life-cycle assessment (LCA).
View Article and Find Full Text PDFJ Environ Eng (New York)
February 2010
Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g.
View Article and Find Full Text PDF