A carbene-catalyzed reaction to synthesize a chiral quinazolinone with a new activation mode of an "aniline-like" N-H moiety is disclosed. Addition of the nitrogen atom of diphenyl -aminobenzaldehydes via NHC activation to imines leads to chiral quinazolinones with high yields and optical purities. The acidity of the N-H moiety was extremely increased through the formation of an acyl azolium intermediate, which was investigated by DFT calculations.
View Article and Find Full Text PDFBackground: To uncover the clinical significance of LINC00858 in the development of Wilms' Tumor and the potential molecular mechanism.
Methods: LINC00858 levels in Wilms' Tumor species and cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The clinical significance of LINC00858 in influencing pathological features and prognosis in patients with Wilms' Tumor was analyzed.
Along with the development of controlled delivery systems for targeted therapy, 'single-strategy' therapy often fails to achieve the desired performance in real body internal environments. In such a case, it is necessary to develop synergistic therapy strategies. Herein, for the first time, we designed and synthesized hyaluronic acid (HA) modified Ag@S-nitrosothiol core-shell nanoparticles for synergistic tumor cell targeted therapy based on photothermal therapy (PTT) and nitric oxide (NO) based chemotherapy.
View Article and Find Full Text PDFVentilator-induced lung injury (VILI) causes problems during acute lung injury treatment, and propofol is a well-known drug to prevent VILI. Herein, we discussed how propofol protects against VILI-induced inflammation with the interaction of nuclear factor E2-related factor 2 (Nrf2)/NOD-like receptor protein 3 (NLRP3). We established VILI mouse models for collecting lung tissues, and these mice were later treated with propofol and Nrf2/NLRP3 activator or inhibitor to observe their effects on VILI with inflammatory factors, 8-hydroxy-2 deoxyguanosine, malondialchehyche level, mitochondrial reactive oxygen species production rate, lung wet/dry weight ratio, lung permeability index measured.
View Article and Find Full Text PDFAn NHC-catalyzed cascade cycloaddition reaction is developed for quick access to structurally sophisticated tetrahydrochromeno[4,3-]pyrrole derivatives. A sterically congested tetrasubstituted chirality carbon center is formed during the cyclization process. All the α-, β-, and carbonyl carbons of the enal substrates are functionalized in chemo- and stereoselective fashion.
View Article and Find Full Text PDFObjectives: Pancreas steatosis is the description of fat accumulation in the pancreatic gland. The prevalence and development mechanisms of pancreatic steatosis in patients with metabolic disorders still remain unclear. The aim of this study is to systematically review the association between pancreatic steatosis and metabolic co-morbidities.
View Article and Find Full Text PDFA kind of tumor targeting nitric oxide donor nanoparticle with brushes is described in this paper. The poly(4-vinylphenylboronic acid) polymeric brush, which shows glucose and pH dual responsiveness, endows the ability of hollow S-nitrosothiols nanoparticle to accurate recognition and binding with the sialic acid over-expressed type tumor cells, such as HepG2 and MCF-7 cells. In vitro experiments, including cells capture and release experiments, confocal fluorescence microscope characterization, cytotoxicity assay with different cells, demonstrate the selective recognition and the controlled NO release to kill tumor cells for these S-nitrosothiols nanoparticles.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2019
It is the goal for the development of cancer target chemotherapy with specific recognition, efficient killing the tumor cells and tissues to avoid the intolerable side effects. Molecular imprinted polymer (MIPs) nanoparticles could introduce kinds of specific bio-markers (template molecules) into the nanoparticles with the subsequent removal, leaving special holes in the structure with predictable recognition specificity with cells. Herein, we design and synthesize a kind of sialic acid (SA) over-expressed tumor target hollow double-layer imprinted polymer nanoparticles with S-nitrosothiols for nitric oxide (NO)-releasing as chemotherapy.
View Article and Find Full Text PDFThrough the incorporation of a silicon atom to an aryl carboxylic ester substrate, the resulting C-Si bond can be activated via the addition of a carbene catalyst on a remote site. This strategy allows for efficient functionalization of the benzylic sp-carbons of aryl carboxylic esters.
View Article and Find Full Text PDFTumor targeted hollow double-layered polymer nanoparticles (HDPNs) with S-nitrosothiols for nitric oxide (NO)-release as chemotherapy were described. Via a two-stage distillation precipitation co-polymerization, simple post-treatment and S-nitrosothiol modification, the S-nitroso HDPNs showed pH and glucose dual responsiveness. This would benefit accurate binding with the sialic acid over-expressed cancer cells, providing prerequisites for the disulfide polymer assisted cell uptake, intracellular GSH induced decomposition and rapid NO release.
View Article and Find Full Text PDF