Publications by authors named "Jil Protzmann"

Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.

View Article and Find Full Text PDF

Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis.

View Article and Find Full Text PDF

Alcohol intoxication at early ages is a risk factor for the development of addictive behavior. To uncover neuronal molecular correlates of acute ethanol intoxication, we used stable-isotope-labeled mice combined with quantitative mass spectrometry to screen more than 2,000 hippocampal proteins, of which 72 changed synaptic abundance up to twofold after ethanol exposure. Among those were mitochondrial proteins and proteins important for neuronal morphology, including MAP6 and ankyrin-G.

View Article and Find Full Text PDF

The current standard of care for moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA). Treatment with tPA can significantly improve neurologic outcomes; however, thrombolytic therapy is associated with an increased risk of intracerebral hemorrhage (ICH). The risk of hemorrhage significantly limits the use of thrombolytic therapy, and identifying pathways induced by tPA that increase this risk could provide new therapeutic options to extend thrombolytic therapy to a wider patient population.

View Article and Find Full Text PDF

Visualization and analysis of axonal organelle transport has been mostly conducted in vitro, using primary neuronal cell cultures, although more recently, intravital organelle imaging has been established in model organisms such as drosophila, zebrafish, and mouse. In this chapter, we describe a method to visualize axonal transport of cellular organelles such as dense core vesicles or mitochondria in the living mouse brain in order to study organelle transport in its native environment. We achieve this goal by injecting adeno-associated viruses expressing fluorescently tagged marker proteins into thalamic nuclei of mice, thereby transducing neurons that project to the surface of the brain.

View Article and Find Full Text PDF

Intermale aggression is used to establish social rank. Several neuronal populations have been implicated in aggression, but the circuit mechanisms that shape this innate behavior and coordinate its different components (including attack execution and reward) remain elusive. We show that dopamine transporter-expressing neurons in the hypothalamic ventral premammillary nucleus (PMv neurons) organize goal-oriented aggression in male mice.

View Article and Find Full Text PDF