Hexavalent chromium Cr(VI) is a common inorganic contaminant in industrial areas and represents a serious threat to human health due its toxicity. Here we report experimental results from a field-scale investigation of Cr(VI) bio-immobilization at Hanford 100H reservation, a U.S Department of Energy facility (Washington State, USA).
View Article and Find Full Text PDFIdentifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps.
View Article and Find Full Text PDFNumerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens.
View Article and Find Full Text PDFWe are developing a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points.
View Article and Find Full Text PDFAlthough as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium.
View Article and Find Full Text PDFCell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris.
View Article and Find Full Text PDFCr(VI) is a widespread groundwater contaminant that is a potent toxin, mutagen, and carcinogen. In situ reductive immobilization is a favored approach for Cr(VI) bioremediation, and Cr(VI) reduction has been reported in a variety of aerobic, facultative, and anaerobic bacteria, including a number of pseudomonads. However, studies comparing Cr(VI) reduction under aerobic and denitrifying conditions in the same organism are not available.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O(2)) were monitored via transcriptomics and proteomics. Exposure to 0.
View Article and Find Full Text PDF