Publications by authors named "Jikai Chen"

A key bottleneck in developing chromatographic material is the chemically entangled control of morphology, pore structure, and material chemistry, which holds back precision material manufacture in order to pursue advanced separation performance. In this work, a precision manufacture strategy based on droplet microfluidics was developed, for production of highly efficient chromatographic microspheres with independent control over particle morphology, pore structure and material chemistry. The droplet-synthesized microspheres display extremely narrow particle size distribution (CV<3 %), enabling a 100 % production yield due to complete elimination of sieving steps.

View Article and Find Full Text PDF

Malignant cells often exhibit significant metabolic alterations, including the utilization of different nutrients to meet energetic and biosynthetic demands. Recent studies have shown that glutamine can support primary colorectal tumor growth and also serve as an alternate energy source during distant metastasis under glucose-limited conditions. However, the overall effects of glutamine on cancer cell physiology are not completely understood.

View Article and Find Full Text PDF

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes.

View Article and Find Full Text PDF

Metal-organic cages (MOCs), as a promising class of crystalline porous materials with well-defined cavities, have attracted wide attention due to their multifarious potential applications in gas storage, host-guest chemistry, molecular recognition, separation, catalysis, sensing, and drug delivery and so on. Herein, we report that a chiral MOC [FeL](ClO) coated capillary column was fabricated for high-resolution gas chromatographic separation of various analytes, including n-alkanes, n-alcohols, positional isomers, aromatic hydrocarbon mixture, especially for racemic compounds. A series of racemic compounds such as alcohols, epoxides, aldehydes, ketones, ethers, esters, alkenes, sulfoxides and amino acid derivatives could be well separated on the [FeL](ClO) coated capillary column with high enantioselectivity and good reproducibility.

View Article and Find Full Text PDF

Chiral metal-organic frameworks have shown great potential in enantioselective separation and asymmetric catalysis due to their diverse and adjustable structures with abundant chiral recognition sites. Herein, a new chiral post-synthetic modification was used for preparing an achiral@chiral metal-organic frameworks core-shell composite [Cu (Btc) ]@[Cu ((+)-Cam) Dabco] by a superficial chiral etching method. The [Cu (Btc) ]@[Cu ((+)-Cam) Dabco] composite was utilized as a novel chiral stationary phase for HPLC enantioseparation.

View Article and Find Full Text PDF

Porous organic cages (POCs) are an emerging class of porous materials that have aroused considerable research interest because of their unique characteristics, including good solubility and a well-defined intrinsic cavity. However, there have so far been no reports of chiral POCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC). Herein, we report the first immobilization of a chiral POC, NC1-R, on thiol-functionalized silica using a mild thiol-ene click reaction to prepare novel CSPs for HPLC.

View Article and Find Full Text PDF

Chiral covalent organic frameworks (CCOFs) have potential application in enantioseparation due to their advantages, such as large surface area, abundant chiral recognition sites and good chemical stability in organic solvents. However, the application of CCOFs in high performance liquid chromatography (HPLC) for enantioseparation has been rarely reported because of the shortcomings of CCOFs, such as light weight, irregular shape, and wide particle size distribution. In order to overcome the above shortcomings, a one-pot synthetic method was adopted to prepare a core-shell composite (β-CD-COF@SiO) via the growth of chiral β-CD COF on the surface of amino-functionalized SiO microspheres.

View Article and Find Full Text PDF

The unique features of uniform and adjustable cavities, abundant chiral active sites, and high enantioselectivity make chiral metal-organic frameworks popular as an emerging candidate for enantioselective separation. However, the wide particle size distribution and irregular shape of as-synthesized metal-organic frameworks result in low column efficiency, undesired chromatographic peak shape, and high column backpressure of such metal-organic frameworks packed columns. Herein, we report the fabrication of chiral core-shell microspheres [Cu (d-Cam) (4,4'-bpy)] @SiO composite for high-performance liquid chromatography enantioseparation to overcome the above-mentioned problems.

View Article and Find Full Text PDF

This paper considers a problem of landmark point detection in clothes, which is important and valuable for clothing industry. A novel method for landmark localization has been proposed, which is based on a deep end-to-end architecture using prior of key point associations. With the estimated landmark points as input, a deep network has been proposed to predict clothing categories and attributes.

View Article and Find Full Text PDF