This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Electrocatalytic reduction of NO is a green and sustainable method that not only helps to treat industrial pollutants in wastewater, but also produces valuable chemicals. However, the slow dynamics of the proton-coupled electron transfer process results in a high barrier and low conversion efficiency. In this work, the Se-deficient FeSe/FeO heterojunction was synthesized, which showed excellent electrochemical performance in 0.
View Article and Find Full Text PDFThe white neutron source driven by an electron accelerator utilizes a pulsed electron beam to bombard a target, producing neutrons through photoneutron reactions. The white neutron source of photoneutron reaction has advantages such as compact structure, low cost, capability of generating ultra-short pulse, and wide applications in the resonance energy region, effectively complementing reactor neutron sources and spallation neutron sources. The development of high-current, high-power electron accelerator-driven white neutron sources is of significant importance for neutron science research and nuclear technology applications.
View Article and Find Full Text PDFTo mitigate carbon dioxide (CO) emissions and advance carbon neutrality, the conversion of CO into value-added fuels and chemicals via the reverse water-gas shift (RWGS) reaction is recognized as a promising approach. In this study, we designed platinum (Pt)-loaded nitrogen-doped carbon composite dual-phase titanium dioxide (TiO) nanomaterials to achieve efficient photo-thermal performance in the RWGS reaction. The incorporation of Pt, nitrogen doping, and the selection of an appropriate calcination temperature enhance light responsiveness and reduce the recombination of photo-generated carriers, thereby improving the efficiency of the photo-thermal RWGS reaction.
View Article and Find Full Text PDFThe development of efficient electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is pivotal for advancing cleaner and sustainable fuel production technologies. The conventional electrocatalysts have limited stability and higher overpotentials, and there is demand to explore advanced materials and synthesis methods. In this context, a novel bifunctional electrocatalyst has been devised through the phosphidation of tungsten molybdenum oxide (P-MoWHO) at relatively low temperatures.
View Article and Find Full Text PDFThe advancement in electrocatalysis, particularly in the development of efficient catalysts for hydrogen and oxygen evolution reactions (HER and OER), is crucial for sustainable energy generation through processes like overall water splitting. A notable bifunctional electrocatalyst, CoFeO/CoFe, has been engineered to facilitate both OER and HER concurrently, aiming to reduce overpotentials. In the pursuit of further enhancing catalytic efficiency, a morphological transformation has been achieved by introducing a sulphur source and multi-walled carbon nanotubes (MWCNTs) into the catalyst system, resulting in S-CoFeO/CoFe/MWCNTs.
View Article and Find Full Text PDFPhoto-thermal co-catalytic reduction of CO to synthesize value-added chemicals presents a promising approach to addressing environmental issues. Nevertheless, traditional catalysts exhibit low light utilization efficiency, leading to the generation of a reduced number of electron-hole pairs and rapid recombination, thereby limiting catalytic performance enhancement. Herein, a Mott-Schottky heterojunction catalyst was developed by incorporating nitrogen-doped carbon coated TiO supported nickel (Ni) nanometallic particles (Ni/x-TiO@NC).
View Article and Find Full Text PDFThe weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies.
View Article and Find Full Text PDFLow-temperature processed electron transport layer (ETL) of TiO that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states.
View Article and Find Full Text PDFSingle-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites.
View Article and Find Full Text PDFDual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO reduction reaction (CORR), N/nitrate reduction, ., have been extensively investigated in the past few years.
View Article and Find Full Text PDFThe role of oxygen vacancies and interfacial strain on the metal-insulator transition (MIT) behavior of high-quality VO nanobeams (NBs) synthesized on SiO/Si substrates employing VO as a precursor has been investigated in this research. Selective oxygen vacancies have been generated by argon plasma irradiation. The MIT is progressively suppressed as the duration of plasma processing increases; in addition, the temperature of MIT () drops by up to 95 K relative to the pristine VO NBs.
View Article and Find Full Text PDFHydrogen peroxide (HO) is a highly value-added and environmental-friendly chemical with various applications. The production of HO by electrocatalytic 2e oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of HO.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2024
As an excellent representative of all-inorganic perovskite materials, CsPbBr has been widely used in high-energy rays or high-energy particles detection for its outstanding high carrier mobility and long diffusion length. The great challenges and opportunities in these fields are crystal growth technology, especially the high-quality and large-sized CsPbBr single crystals. In this work, the influences of growth parameters (temperature gradient, growth rate, cooling rate) and thermal stress by the vertical Bridgman method on the quality and performance of CsPbBr crystals are systematically studied.
View Article and Find Full Text PDFLignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward.
View Article and Find Full Text PDFThe development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading.
View Article and Find Full Text PDFThe development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances.
View Article and Find Full Text PDFThe spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality.
View Article and Find Full Text PDFSurface reconstruction generates real active species in electrochemical conditions; rational regulating reconstruction in a targeted manner is the key for constructing highly active catalyst. Herein, we use the high-valence Mo modulated orthorhombic PrIrMoO as model to activate lattice oxygen and cations, achieving directional and accelerated surface reconstruction to produce self-terminated Ir‒O‒Mo (O represents the bridge oxygen) active species that is highly active for acidic water oxidation. The doped Mo not only contributes to accelerated surface reconstruction due to optimized Ir‒O covalency and more prone dissolution of Pr, but also affords the improved durability resulted from Mo-buffered charge compensation, thereby preventing fierce Ir dissolution and excessive lattice oxygen loss.
View Article and Find Full Text PDFAim: The purpose of this study was to investigate the function and mechanism of a novel peptide derived from adipose-derived stem cell-conditioned medium (ADSC-CM).
Methods: Mass spectrometry was applied to identify expressed peptides in ADSC-CM obtained at different time points. The cell counting kit-8 assay and quantitative reverse transcription polymerase chain reactions were performed to screen the functional peptides contained within ADSC-CM.
The hydrogen evolution from ammonia borane is intriguing but challenging due to its sluggish kinetics. In this regard, the gold nanoparticles amalgamation with metal phosphides is speculated to be more efficient catalysts. Here, the catalysts Au/NiP and Au/CoP with the high synergetic effect of Au nanoparticles and metal phosphides were synthesized for ammonia borane hydrolysis.
View Article and Find Full Text PDF