Publications by authors named "Jijo Thomas"

Injectable hydrogels have demonstrated advantages in cartilage repair by enabling the delivery of cells through a minimally invasive approach. However, several injectable hydrogels suffer from rapid degradation and low mechanical strength. Moreover, higher mechanical stiffness in hydrogels can have a detrimental effect on post-implantation cell viability.

View Article and Find Full Text PDF

Interest in the development of new generation injectable bone cements having appropriate mechanical properties, biodegradability, and bioactivity has been rekindled with the advent of nanoscience. Injectable bone cements made with calcium sulfate (CS) are of significant interest, owing to its compatibility and optimal self-setting property. Its rapid resorption rate, lack of bioactivity, and poor mechanical strength serve as a deterrent for its wide application.

View Article and Find Full Text PDF

The extensive and indiscriminate use of antibiotics in the ongoing COVID-19 pandemic might significantly contribute to the growing number of multiple drug resistant (MDR) bacteria. With the dwindling pipeline of new and effective antibiotics, we might soon end up in a post-antibiotic era, in which even common bacterial infections would be a challenge to control. To prevent this, an antibiotic-free strategy would be highly desirable.

View Article and Find Full Text PDF

Tissue engineering demands intelligently designed scaffolds that encompass the properties of the target tissues in terms of mechanical and bioactive properties. An ideal scaffold for engineering a cartilage tissue should provide the chondrocytes with a favorable 3D microarchitecture apart from possessing optimal mechanical characteristics such as compressibility, energy dissipation, strain stiffening, . Herein, we used a unique design approach to develop a hydrogel having a dynamic interpenetrating network to serve as a framework to support chondrocyte growth and differentiation.

View Article and Find Full Text PDF

The ECM of cartilage is composed of proteoglycans (PG) that contain glycosaminoglycan (GAG), aggrecan, hyaluronic acid (HA) and other molecular components which play an important role in regulating chondrocyte functions via cell-matrix interactions, integrin-mediated signalling etc. Implantation of chondrocytes encapsulated in scaffolds that mimic the micro-architecture of proteoglycan, is expected to enhance cartilage repair. With an aim to create a hydrogel having macromolecular structure that resembles the cartilage-specific ECM, we constructed a hierarchal structure that mimic the PG.

View Article and Find Full Text PDF

Conductive hydrogels are attracting considerable interest in view of their potential in a wide range of applications that include healthcare and electronics. Such hydrogels are generally incorporated with conductive materials/polymers. Herein, we present a series of conductive hydrogels (Ch-CMC-PDA), prepared with no additional conductive material.

View Article and Find Full Text PDF

Curcumin, a pleiotropic signalling molecule from Curcuma longa, is reported to be effective against multiple cancers. Despite its promising effect, curcumin had failed in clinical trials due to its low aqueous solubility, stability and poor bioavailability. While several approaches are being attempted to overcome the limitations, the improved solubility observed with curcumin-derived carbon dots appeared to be a strategy worth exploring.

View Article and Find Full Text PDF

3D biopolymeric scaffolds often lack the biochemical cues and mechanical strength to encourage bone tissue regeneration. Chemical crosslinkers have been extensively used to impart strength, but have been found to be toxic at the site of implantation and possess a lacuna in physical strength. We attempted to address this by engineering a self-crosslinked polymer through the in-situ reduction of Graphene oxide (GO) in a gelatin cryogel (Gel-RGO) using ice as a template to create pores.

View Article and Find Full Text PDF

Repair of critical size bone defects is a clinical challenge that usually necessitates the use of bone substitutes. For successful bone repair, the substitute should possess osteoconductive, osteoinductive, and vascularization potential, with the ability to control post-implantation infection serving as an additional advantage. With an aim to develop one such substitute, we optimized a zinc-doped hydroxyapatite (HZ) nanocomposite decorated on reduced graphene oxide (rGO), termed as GHZ, and demonstrated its potential to augment the bone repair.

View Article and Find Full Text PDF

The control of blood flow from breached blood vessels during surgery or trauma is challenging. With the existing treatment options being either expensive or ineffective, the development of a haemostat that overcome such drawbacks would be beneficial. With an aim to develop an ideal haemostat, the potential of sodium starch glycolate (SSG), a commonly used pharmaceutical disintegrant was modified to obtain porous microparticles (pSSG).

View Article and Find Full Text PDF

Despite the promising role of magnetic hyperthermia in cancer therapy, its use in patients has been restricted by hurdles that include inefficient targeting of magnetic particles to the tumor site, limited bioavailability, and high toxicity, etc. Taking advantage of the unique metabolic property of cancer cells, we explored the potential of these cells to biosynthesize magnetic nanoparticles for potential hyperthermia applications. Treatment of cancer cells with a mixture of FeCl and zinc gluconate resulted in a significant increase in intracellular Fe and Zn content in these cells.

View Article and Find Full Text PDF

The aim of stem cell therapy is to repair damaged tissues. Some of the challenges facing its success include cell retention and survival at the wound site. While the retention of cells has been addressed by employing scaffolds, the survival of transplanted cells in the repair tissue is however low.

View Article and Find Full Text PDF

Effects of turkey-derived beneficial bacteria Lactobacillus ingluviei UMNPBX19 and Lactobacillus salivarius UMNPBX2 on Salmonella Heidelberg (SH) in turkey poults was investigated. Using in vitro studies, we determined each strain's resistance to pH 2.5 and 0.

View Article and Find Full Text PDF