Three-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing.
View Article and Find Full Text PDFRecent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors.
View Article and Find Full Text PDFConspectusChirality is ubiquitous in the universe and in living creatures over detectable length scales from the subatomic to the galactic, as exemplified in the two extremes by subatomic particles (neutrinos) and spiral galaxies. Between them are living creatures that display multiple levels of chirality emerging from hierarchically assembled asymmetric building blocks. Not too far from the bottom of this pyramid are the foundational building blocks with chiral atomic centers on carbon atoms exemplified by l-amino acids and d-sugars that are self-assembled into higher-order structures with increasing dimensions forming highly complex, amazingly functional, and energy-efficient living systems.
View Article and Find Full Text PDFPharmaceutics
September 2022
Chirality, the property whereby an object or a system cannot be superimposed on its mirror image, prevails amongst nature over various scales. Especially in biology, numerous chiral building blocks and chiral-specific interactions are involved in many essential biological activities. Despite the prevalence of chirality in nature, it has been no longer than 70 years since the mechanisms of chiral-specific interactions drew scientific attention and began to be studied.
View Article and Find Full Text PDFResearch on chiral nanomaterials (NMs) has grown radically with a rapid increase in the number of publications over the past decade. It has attracted a large number of scientists in various fields predominantly because of the emergence of unprecedented electric, optical, and magnetic properties when chirality arises in NMs. For applications, it is particularly informative and fascinating to investigate how chiral NMs interact with electromagnetic waves and magnetic fields, depending on their intrinsic composition properties, atomic distortions, and assembled structures.
View Article and Find Full Text PDFBiological systems consist of hierarchical protein structures, each of which has unique 3D geometries optimized for specific functions. In the past decades, the growth of inorganic materials on specific proteins has attracted considerable attention. However, the use of specific proteins as templates has only been demonstrated in relatively simple organisms, such as viruses, limiting the range of structures that can be used as scaffolds.
View Article and Find Full Text PDFChiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR.
View Article and Find Full Text PDFAccurate medical recordkeeping is a major challenge in many low-resource settings where well-maintained centralized databases do not exist, contributing to 1.5 million vaccine-preventable deaths annually. Here, we present an approach to encode medical history on a patient using the spatial distribution of biocompatible, near-infrared quantum dots (NIR QDs) in the dermis.
View Article and Find Full Text PDFChirality is ubiquitous in nature and hard-wired into every biological system. Despite the prevalence of chirality in biological systems, controlling biomaterial chirality to influence interactions with cells has only recently been explored. Chiral-engineered supraparticles (SPs) that interact differentially with cells and proteins depending on their handedness are presented.
View Article and Find Full Text PDFPhoton-to-matter chirality transfer offers both simplicity and universality to chiral synthesis, but its efficiency is typically low for organic compounds. Besides the fundamental importance of this process relevant for understanding the origin of homochirality on Earth, new pathways for imposing chiral bias during chemical process are essential for a variety of technologies from medicine to informatics. The strong optical activity of inorganic nanoparticles (NPs) affords photosynthetic routes to chiral superstructures using circularly polarized photons.
View Article and Find Full Text PDFChiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation.
View Article and Find Full Text PDFInterconnectivity of components in three-dimensional networks (3DNs) is essential for stress transfer in hydrogels, aerogels, and composites. Entanglement of nanoscale components in the network relies on weak short-range intermolecular interactions. The intrinsic stiffness and rod-like geometry of nanoscale components limit the cohesive energy of the physical crosslinks in 3DN materials.
View Article and Find Full Text PDFThe high optical and chemical activity of nanoparticles (NPs) signifies the possibility of converting the spin angular momenta of photons into structural changes in matter. Here, we demonstrate that illumination of dispersions of racemic CdTe NPs with right- (left-)handed circularly polarized light (CPL) induces the formation of right- (left-)handed twisted nanoribbons with an enantiomeric excess exceeding 30%, which is ∼10 times higher than that of typical CPL-induced reactions. Linearly polarized light or dark conditions led instead to straight nanoribbons.
View Article and Find Full Text PDFThe resistance of bioceramics against non-specific adsorption of serum proteins is critical for a wide range of biomedical applications. Some polysaccharides serve as natural protein-resistant molecules in extracellular matrices; however, the stable adhesion of polysaccharides to ceramic biomaterials in an aqueous solution is very challenging because chemical linkages at organic/inorganic interfaces are susceptible to hydrolytic degradation. Here, a catechol-grafted dextran, which strongly binds to titania (TiO2 ) in an aqueous milieu to effectively suppress cell adhesion through anti-fouling activity against non-specific protein adsorption, is introduced.
View Article and Find Full Text PDFSurface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface chemistry. To achieve this goal, the incorporation of structurally diverse molecules onto any material surface is an essential capability for ideal surface modification.
View Article and Find Full Text PDF