Publications by authors named "Jiheng Zhan"

Bone is a richly innervated and vascularized tissue, whereas nerve-vascular network reconstruction was often ignored in biomaterial design, resulting in delayed or incomplete bone healing. Inspired by the bone injury microenvironments, here we report a controllable drug delivery strategy using a pH and reactive oxygen species (ROS) dual-response injectable hydrogel. Based on the dynamic borate ester bond covalent crosslinking, nano-hydroxyapatite (HA) and curculigoside (CCG) are integrated into PVA/TSPBA (PT) to construct a responsive injectable hydrogel (PTHC), which scavenges excessive ROS from the injury microenvironment and responsively releases HA and CCG, providing favorable homeostasis and sustained release drug delivery system for bone repair.

View Article and Find Full Text PDF

Purpose: Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) is often accompanied by rapid and extensive bone mineral loss below the lesion level, and there is currently no gold standard for treatment. Evidence suggests that polydatin (PLD) may help promote osteogenic differentiation and exhibit anti-osteoporotic activity. However, whether PLD could reverse substantial bone loss in SCI patients, especially those with protracted injury, and the underlying regulatory mechanism have not been investigated.

View Article and Find Full Text PDF

Objective: To compare the accuracy, efficiency, and safety of robotic assistance (RA) and conventional fluoroscopy guidance for the placement of C1 lateral mass and C2 pedicle screws in posterior atlantoaxial fusion.

Methods: The data of patients who underwent posterior C1-C2 screw fixation (Goel-Harm's technique) in our hospital from August 2014 to March 2021 were retrospectively evaluated, including 14 cases under fluoroscopic guidance and 11 cases under RA. The hospital records, radiographic results, surgical data, and follow-up records were reviewed.

View Article and Find Full Text PDF

Objectives: The posterior superior iliac spine (PSIS) is an important anatomical landmark often involved in spinal manipulation and surgical bone harvest. Hence, knowledge of variations in the PSIS may be predictive and valuable in clinical settings. Taking the complex morphology into account, the study is aimed at proposing a classification of PSIS in the Chinese population.

View Article and Find Full Text PDF

Background: Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery.

Methods: The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease.

View Article and Find Full Text PDF

Background: Tauroursodeoxycholic acid (TUDCA) is a hydrophilic bile acid derivative, which has been demonstrated to have neuroprotective effects in different neurological disease models. However, the effect and underlying mechanism of TUDCA on spinal cord injury (SCI) have not been fully elucidated. This study aims to investigate the protective effects of TUDCA in the SCI mouse model and the related mechanism involved.

View Article and Find Full Text PDF

Spinal cord ischemia/reperfusion injury (SCII) is a devastating complication of spinal or thoracic surgical procedures and can lead to paraplegia or quadriplegia. Neuronal cell damage involving mitochondrial dysfunction plays an important role in the pathogenesis of SCII. Despite the availability of various treatment options, there are currently no mitochondria-targeting drugs that have proven effective against SCII.

View Article and Find Full Text PDF

Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation.

View Article and Find Full Text PDF
Article Synopsis
  • Bone marrow mesenchymal stem cells (BMSCs) have potential for spinal cord injury repair, but their ability to become neurons is limited.
  • Polydatin (PD), a compound from a Chinese herb, enhances BMSC differentiation into neuron-like cells and protects them from injury by activating the Nrf2 signaling pathway.
  • Combining PD with BMSC transplantation improves recovery of hindlimb movement in an animal model, highlighting PD's role in promoting nerve regeneration and functional recovery after spinal cord injuries.
View Article and Find Full Text PDF

Bone mesenchymal stem cells (BMSCs) are a well-known donor graft source due to their potential for self-renewal and differentiation into multi-lineage cell types, including osteoblasts that are critical for fracture healing. Fasudil (FAS), a Rho kinase inhibitor, has been proven to induce the differentiation of bone marrow stem cells (BMSCs) into neuron-like cells. However, its role in the osteogenesis of BMSCs remain uncertain.

View Article and Find Full Text PDF
Article Synopsis
  • Spinal cord injury (SCI) leads to severe disabilities and high treatment costs, and bone marrow mesenchymal stem cells (BMSCs) have emerged as a potential therapy, but their effectiveness is limited due to poor survival rates and unfavorable conditions post-injury.
  • Coenzyme Q10 (CoQ10) acts as a strong antioxidant, which can enhance the survival and effectiveness of BMSC therapy by reducing oxidative stress and preventing cell death.
  • The study found that CoQ10 treatment significantly reduces proapoptotic proteins while increasing antiapoptotic proteins in BMSCs, and it also activates the Nrf-2 signaling pathway, suggesting that CoQ10 improves BMSC viability and therapeutic potential in treating SCI.
View Article and Find Full Text PDF

Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is one of the most devastating diseases that may cause paralysis, disability and irreversible loss of functions, which ultimately lead to permanent disabilities and a decrease in patient life expectancy. Coenzyme Q10 (CoQ10) is a lipid-soluble vitamin-like benzoquinone compound that can exert antioxidant and anti-apoptotic functions in a variety of diseases. However, the antioxidant and anti-apoptotic effects of CoQ10 in the treatment of SCI are still unknown.

View Article and Find Full Text PDF

Background/aims: Tangeretin (TAN), a major phytochemical in tangerine peels and an important Chinese herb, has multiple biological properties, especially antioxidative and anti-inflammatory effects. However, the mechanisms remain unclear. Based on these findings, the aim of the present study was to assess the antioxidant and anti-inflammatory properties of TAN in bovine type II collagen-induced arthritis rats.

View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most chronic degenerative arthritic diseases, which gradually results in chondrocyte changes, articular cartilage degeneration, subchondral bone sclerosis, joint pain, swelling, and dysfunction. Berberine (BBR) has various confirmed biological activities, such as anti-inflammatory and antioxidant activities. However, the effect of BBR on the production of inflammation-associated proteins, including inducible nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, metalloproteinases (MMPs), Collagen II, TNF-α, and IL-6 via the MAPK (mitogen-activated protein kinases) pathway in IL-1β-stimulated rat chondrocytes, has not yet been studied.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) are considered as transplants for the treatment of central nervous system (CNS) trauma, but the therapeutic effect is restricted by their finite mobility and homing capacity. Fasudil (FAS), a potent Rho kinase inhibitor, has been reported to alleviate nerve damage and induce the differentiation of BMSCs into neuron-like cells. However, the effect of FAS on the migration of BMSCs remains largely unknown.

View Article and Find Full Text PDF