A 59-year-old previously healthy woman presented with a six-month history of fever, nonproductive cough, and weight loss. The cause of these symptoms remained obscure despite a thorough, month-long hospitalization. On presentation, she was normotensive with a pulse of 98 beats/minute, respiratory rate of 20 breaths/minute, and a temperature of 39.
View Article and Find Full Text PDFCleavage and polyadenylation (CPA) is responsible for 3' end processing of eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607, which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian cells. Here we show that JTE-607 perturbs gene expression through both transcriptional readthrough and alternative polyadenylation (APA).
View Article and Find Full Text PDFRNA stability plays an important role in gene expression. Here, using 3' end sequencing of newly made and pre-existing poly(A)+ RNAs, we compare transcript stability in multiple human cell lines, including HEK293T, HepG2, and SH-SY5Y. We show that while mRNA stability is generally conserved across the cell lines, specific transcripts having a high GC content and possibly more stable secondary RNA structures are relatively more stable in SH-SY5Y cells compared to the other 2 cell lines.
View Article and Find Full Text PDFPoly(A) tail length is regulated in both the nucleus and cytoplasm. One factor that controls polyadenylation in the cytoplasm is CPEB1, an RNA binding protein that associates with specific mRNA 3'UTR sequences to tether enzymes that add and remove poly(A). Two of these enzymes, the noncanonical poly(A) polymerases GLD2 (TENT2, PAPD4, Wispy) and GLD4 (TENT4B, PAPD5, TRF4, TUT3), interact with CPEB1 to extend poly(A).
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
Non-alcoholic fatty liver disease (NAFLD) and serum uric acid (SUA) levels are risk factors for developing cardiovascular disease (CVD). Additionally, previous studies have suggested that high SUA levels increase the risk of having NAFLD. However, no study has investigated the relationship between SUA and CVD risk in NAFLD.
View Article and Find Full Text PDFPosttranscriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among posttranscriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia.
View Article and Find Full Text PDFMost human protein-coding genes produce alternative polyadenylation (APA) isoforms that differ in 3' UTR size or, when coupled with splicing, have variable coding sequences. APA is an important layer of gene expression program critical for defining cell identity. Here, by using a catalytically dead Cas9 and coupling its target site with polyadenylation site (PAS), we develop a method, named CRISPRpas, to alter APA isoform abundance.
View Article and Find Full Text PDFThe CRISPR/Cas9 technology is revolutionizing genomic engineering. The high efficiency and selectivity of the system have inspired the development of various derived tools for gene regulation at different levels, such as transcriptional activation or inhibition, epigenetic modification, splicing, and base editing. Cleavage and polyadenylation (CPA) is an essential 3' end maturation step for almost all eukaryotic mRNAs.
View Article and Find Full Text PDFThe thymus is a primary lymphoid organ that plays an essential role in T lymphocyte maturation and selection during development of one arm of the mammalian adaptive immune response. Although transcriptional mechanisms have been well documented in thymocyte development, co-/post-transcriptional modifications are also important but have received less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy (DM), is essential for normal thymus development and function.
View Article and Find Full Text PDFTranscription
April 2020
Gene expression involves multiple co- and post-transcriptional processes that have been increasingly found intertwined. A recent work by our groups (Chen et al. , 2019) indicates that expression of alternative polyadenylation isoforms in mammalian cells can be controlled by nuclear export activities.
View Article and Find Full Text PDFRegulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution.
View Article and Find Full Text PDFCPEB4 is an RNA binding protein expressed in neuronal tissues including brain and spinal cord. CPEB4 has two domains: one that is structured for RNA binding and one that is unstructured and low complexity that has no known function. Unstructured low complexity domains (LCDs) in proteins are often found in RNA-binding proteins and have been implicated in motor neuron degenerative diseases such as amyotrophic lateral sclerosis, indicating that these regions mediate normal RNA processing as well as pathological events.
View Article and Find Full Text PDFTranslational control of mRNAs in dendrites is essential for certain forms of synaptic plasticity and learning and memory. CPEB is an RNA-binding protein that regulates local translation in dendrites. Here, we identify poly(A) polymerase Gld2, deadenylase PARN, and translation inhibitory factor neuroguidin (Ngd) as components of a dendritic CPEB-associated polyadenylation apparatus.
View Article and Find Full Text PDFThe expansion of unstable microsatellites is the cause of a number of inherited neuromuscular and neurological disorders. While these expanded repeats can be located in either the coding or non-coding regions of genes, toxic RNA transcripts have been primarily implicated in the pathogenesis of non-coding expansion diseases. In this review, we briefly summarize studies which support this RNA-mediated toxicity model for several neurologic disorders and highlight how pathogenic RNAs might negatively impact nervous system functions.
View Article and Find Full Text PDFRNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)(n) and (CCTG)(n) microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins.
View Article and Find Full Text PDF