Publications by authors named "Jihae Choi"

This study aimed to identify the rates of cigarette sales to underage youth and the factors associated with these sales using a mystery shopping technique. Of the convenience stores selling cigarettes in Seoul, South Korea, 2600 were sampled in 2019 and 2020. Personal and environmental factors were independent variables.

View Article and Find Full Text PDF

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb.

View Article and Find Full Text PDF

Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most difficult cancers to treat with a 5-year survival rate less than 5%. An immunotherapeutic vaccine approach targeting GBM-specific antigen, EGFRvIII, previously demonstrated important clinical impact. However, immune escape variants were reported in the trial, suggesting that multivalent approaches targeting GBM-associated antigens may be of importance.

View Article and Find Full Text PDF

Monoclonal antibody therapy has played an important role against SARS-CoV-2. Strategies to deliver functional, antibody-based therapeutics with improved in vivo durability are needed to supplement current efforts and reach underserved populations. Here, we compare recombinant mAbs COV2-2196 and COV2-2130, which compromise clinical cocktail Tixagevimab/Cilgavimab, with optimized nucleic acid-launched forms.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021.

View Article and Find Full Text PDF

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector () expressing human ACE-2 ().

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, and currently, there is no vaccine to combat it.
  • Researchers have developed a synthetic DNA vaccine called INO-4800, targeting the Spike protein of SARS-CoV-2, building on previous work with the MERS coronavirus.
  • Initial tests in mice and guinea pigs show that INO-4800 generates strong immune responses, including neutralizing antibodies, marking it as a potential candidate for further development as a COVID-19 vaccine.
View Article and Find Full Text PDF

The d1T-MoS, distorted-1T group-VIB transition metal dichalcogenides monolayer, is considered as promising atomically thin out-of-plane ferroelectric materials. We study the origin of the ferroelectricity in d1T-MoS monolayer using first-principles calculations and the Landau theory of phase transition. In contrast to conventional improper ferroelectrics, we find that the polarization has dependence on both primary and secondary modes.

View Article and Find Full Text PDF

Group-VIIB transition metal dichalcogenides (TMDCs) are known to be stabilized solely in a distorted 1T phase termed as 1T″ phase, which is compared to many stable or metastable phases in other TMDCs. Using first-principles calculations, we study the structural origin of 1T″ phase group-VIIB TMDCs. We find that quasi 1D Peierls-like instability is responsible for the transition to the 1T″ phase ReS monolayer from the 1T' phase, another distorted 1T phase.

View Article and Find Full Text PDF

In Salmonella enterica serovar Typhimurium, many genes encoded within Salmonella pathogenicity island 1 (SPI1) are required to induce intestinal/diarrheal disease. In this study, we compared the expression of four SPI1 genes (hilA, invF, prgH, and sipC) under shaking and standing culture conditions and found that the expression of these genes was highest during the transition from the exponential to stationary phase under shaking conditions. To identify regulators associated with the stationary phase-dependent activation of SPI1, the effects of selected regulatory genes, including relA/spoT (ppGpp), luxS, ihfB, hfq, and arcA, on the expression of hilA and invF were compared under shaking conditions.

View Article and Find Full Text PDF