Multiple double-pole bright-bright and bright-dark soliton solutions for the multicomponent nonlinear Schrödinger (MCNLS) system comprising three types of nonlinearities, namely, focusing, defocusing, and mixed (focusing-defocusing) nonlinearities, arising in different physical settings are constructed. An interesting type of energy-exchanging phenomenon during collision of these double-pole solitons is unraveled. To explore the objectives, we consider the general solutions of a set of generalized MCNLS equations and by taking the long-wavelength limit with proper parameter choices of single-pole bright-bright and bright-dark soliton pairs, the multiple double-pole bright-bright and bright-dark soliton solutions are constructed in terms of determinants.
View Article and Find Full Text PDFThe general set of nonlocal M-component nonlinear Schrödinger (nonlocal M-NLS) equations obeying the PT-symmetry and featuring focusing, defocusing, and mixed (focusing-defocusing) nonlinearities that has applications in nonlinear optics settings, is considered. First, the multisoliton solutions of this set of nonlocal M-NLS equations in the presence and in the absence of a background, particularly a periodic line wave background, are constructed. Then, we study the intriguing soliton collision dynamics as well as the interesting positon solutions on zero background and on a periodic line wave background.
View Article and Find Full Text PDFGeneral semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper.
View Article and Find Full Text PDFGeneral dark solitons and mixed solutions consisting of dark solitons and breathers for the third-type Davey-Stewartson (DS-III) equation are derived by employing the bilinear method. By introducing the two differential operators, semi-rational solutions consisting of rogue waves, breathers, and solitons are generated. These semi-rational solutions are given in terms of determinants whose matrix elements have simple algebraic expressions.
View Article and Find Full Text PDF