Publications by authors named "Jignesh M Doshi"

Multidrug resistance (MDR) in cancer is a phenomenon in which administration of a single chemotherapeutic agent causes cross-resistance of cancer cells to a variety of therapies even with different mechanisms of action. Development of MDR against standard therapies is a major challenge in the treatment of cancer. Previously we have demonstrated a unique ability of CXL017 (5) to selectively target MDR cancer cells and synergize with mitoxantrone (MX) in HL60/MX2 MDR cells.

View Article and Find Full Text PDF

Rapid development of multiple drug resistance against current therapies is a major barrier in the treatment of cancer. Therefore, anticancer agents that can overcome acquired drug resistance in cancer cells are of great importance. Previously, we have demonstrated that ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (5a, sHA 14-1), a stable analogue of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (6, HA 14-1), mitigates drug resistance and synergizes with a variety of cancer therapies in leukemia cells.

View Article and Find Full Text PDF

HA 14-1, a small-molecule antagonist against anti-apoptotic Bcl-2 proteins, was demonstrated to induce selective cytotoxicity toward malignant cells and to overcome drug resistance. Due to its poor stability and the reactive oxygen species (ROS) generated by its decomposition, chemical modification of HA 14-1 is needed for its future development. We have synthesized a stabilized analog of HA 14-1--sHA 14-1, which did not induce the formation of ROS.

View Article and Find Full Text PDF

Overexpressing antiapoptotic Bcl-2 proteins to suppress apoptosis is one major mechanism via which cancer cells acquire drug resistance against cancer therapy. Ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4 H-chromene-3-carboxylate (HA 14-1) is one of the earliest small-molecule antagonists against antiapoptotic Bcl-2 proteins. Since its discovery, HA 14-1 has been shown to be able to synergize a variety of anticancer agents.

View Article and Find Full Text PDF

The structure-activity relationship studies of ethyl 2-amino-6-cyclopentyl-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (1, HA 14-1), an antagonist of the antiapoptotic Bcl-2 proteins, are reported. A series of analogues of 1 with varied functional groups at the 6-position of the chromene ring were synthesized. These candidates were evaluated for their binding interactions with three antiapoptotic proteins: Bcl-2, Bcl-XL, and Bcl-w.

View Article and Find Full Text PDF