Publications by authors named "Jigen Luo"

We introduce a one-dimensional (1D) residual convolutional neural network with Partial Least Squares (1D-ResCNN-PLS) to solve the covariance and nonlinearity problems in traditional Chinese medicine dose-effect relationship data. The model combines a 1D convolutional layer with a residual block to extract nonlinear features and employs PLS for prediction. Tested on the Ma Xing Shi Gan Decoction datasets, the model significantly outperformed conventional models, achieving high accuracies, sensitivities, specificities, and AUC values, with considerable reductions in mean square error.

View Article and Find Full Text PDF

Metabolomics data has high-dimensional features and a small sample size, which is typical of high-dimensional small sample (HDSS) data. Too high a dimensionality leads to the curse of dimensionality, and too small a sample size tends to trigger overfitting, which poses a challenge to deeper mining in metabolomics. Feature selection is a valuable technique for effectively handling the challenges HDSS data poses.

View Article and Find Full Text PDF

In the field of data analysis, it is often faced with a large number of missing values, especially in metabolomics data, this problem is more prominent. Data imputation is a common method to deal with missing metabolomics data, while traditional data imputation methods usually ignore the differences in missing types, and thus the results of data imputation are not satisfactory. In order to discriminate the missing types of metabolomics data, a missing data classification model (PX-MDC) based on particle swarm algorithm and XGBoost is proposed in this paper.

View Article and Find Full Text PDF

A dose-effect relationship analysis of traditional Chinese Medicine (TCM) is crucial to the modernization of TCM. However, due to the complex and nonlinear nature of TCM data, such as multicollinearity, it can be challenging to conduct a dose-effect relationship analysis. Partial least squares can be applied to multicollinearity data, but its internally extracted principal components cannot adequately express the nonlinear characteristics of TCM data.

View Article and Find Full Text PDF

The text similarity calculation plays a crucial role as the core work of artificial intelligence commercial applications such as traditional Chinese medicine (TCM) auxiliary diagnosis, intelligent question and answer, and prescription recommendation. However, TCM texts have problems such as short sentence expression, inaccurate word segmentation, strong semantic relevance, high feature dimension, and sparseness. This study comprehensively considers the temporal information of sentence context and proposes a TCM text similarity calculation model based on the bidirectional temporal Siamese network (BTSN).

View Article and Find Full Text PDF

The basic experimental data of traditional Chinese medicine are generally obtained by high-performance liquid chromatography and mass spectrometry. The data often show the characteristics of high dimensionality and few samples, and there are many irrelevant features and redundant features in the data, which bring challenges to the in-depth exploration of Chinese medicine material information. A hybrid feature selection method based on iterative approximate Markov blanket (CI_AMB) is proposed in the paper.

View Article and Find Full Text PDF