Background: Acute hepatic porphyria (AHP) is a group of rare but treatable conditions associated with diagnostic delays of 15 years on average. The advent of electronic health records (EHR) data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. However, prediction models can be difficult to train given the limited case numbers, unstructured EHR data, and selection biases intrinsic to healthcare delivery.
View Article and Find Full Text PDFImportance: Acute Hepatic Porphyria (AHP) is a group of rare but treatable conditions associated with diagnostic delays of fifteen years on average. The advent of electronic health records (EHR) data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. However, prediction models can be difficult to train given the limited case numbers, unstructured EHR data, and selection biases intrinsic to healthcare delivery.
View Article and Find Full Text PDFBackground: With the growing adoption of the electronic health record (EHR) worldwide over the last decade, new opportunities exist for leveraging EHR data for detection of rare diseases. Rare diseases are often not diagnosed or delayed in diagnosis by clinicians who encounter them infrequently. One such rare disease that may be amenable to EHR-based detection is acute hepatic porphyria (AHP).
View Article and Find Full Text PDF