Publications by authors named "Jifeng Pang"

Article Synopsis
  • The efficient upgrading of biomass-derived oxygenates into fuels and chemicals requires selective C-C bond formation and effective oxygen removal.
  • Co-feeding water can aid catalytic reactions, but a recent study utilized a CeSnBeta catalyst with dual Lewis acidic sites to generate isobutene from acetone without needing water.
  • By incorporating cerium into a modified SnBeta framework, researchers achieved stable and selective catalysis for acetone-to-isobutene conversions, highlighting the advantages of this confined dual site approach.
View Article and Find Full Text PDF

In recent years, the issues of global warming and CO emission reduction have garnered increasing global attention. In the 21st Conference of the Parties (convened in Paris in 2015), 179 nations and the European Union signed a pivotal agreement to limit the global temperature increase of this century to well below 2 K above preindustrial levels. To fulfill this objective, extensive research has been conducted to use renewable energy sources as potential replacements for traditional fossil fuels.

View Article and Find Full Text PDF

Catalytic hydrodeoxygenation of neat methyl levulinate into pentanoic biofuels is one of the pivotal reactions in biomass valorization. A combined pentanoic acid/methyl pentanoate yield of 92% can be achieved for Ru/USY with a Si/Al ratio of 15 at 220 °C and 40 bar H. The superior performance of Ru/USY-15 for the efficient production of pentanoic biofuels is attributed to the optimal site balance between the Ru species and strong acid sites ( 1 : 5).

View Article and Find Full Text PDF

Production of chemicals and fuels from renewable cellulosic biomass is important for the creation of a sustainable society, and it critically relies on the development of new and efficient transformation routes starting from cellulose. Here, a chemocatalytic conversion route from cellulosic biomass to methyl glycolate (MG), ethylene glycol (EG), and ethanol (EtOH) is reported. By using a tungsten-based catalyst, cellulose is converted into MG with a yield as high as 57.

View Article and Find Full Text PDF

The effects of typical inorganic impurities on the catalytic conversion of cellulose to ethylene glycol (EG) were investigated, and the mechanism of catalyst deactivation by certain impurities were clarified. It was found that most impurities did not affect the EG yield, but some non-neutral impurities or Ca and Fe ions greatly decreased the EG yield. Conditional experiments and catalyst characterization showed that some impurities changed the pH of the reaction solution and affected the cellulose hydrolysis rate; Ca and Fe cations reacted with tungstate ions and suppressed the retro-aldol condensation.

View Article and Find Full Text PDF

Following our previous report on the selective transformation of cellulose to ethylene glycol (EG) over a binary catalyst composed of tungstic acid and Ru/C, we herein report a new low-cost but more effective binary catalyst by using Raney nickel in place of Ru/C (Raney Ni+H(2 WO(4) ). In addition to tungstic acid, other W compounds were also investigated in combination with Raney Ni. The results showed that the EG yield depended on the W compound: H(4)SiW(12)O(40) View Article and Find Full Text PDF

The hydrolysis of cellulose over sulfonated carbons was promoted greatly by elevating the sulfonation temperature. With 250 degrees C-sulfonated CMK-3 as a catalyst, the cellulose was selectively hydrolyzed into glucose with the glucose yield as high as 74.5%, which is the highest level reported so far on solid acid catalysts.

View Article and Find Full Text PDF