Publications by authors named "Jifa Tian"

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

Leveraging the reciprocal-space proximity effect between superconducting bulk and topological surface states (TSSs) offers a promising way to topological superconductivity. However, elucidating the mutual influence of bulk and TSSs on topological superconductivity remains a challenge. Here, we report pioneering transport evidence of a thickness-dependent transition from conventional to unconventional superconductivity in 2M-phase WS (2M-WS).

View Article and Find Full Text PDF
Article Synopsis
  • Effective control of magnetic phases in two-dimensional magnets, like CrI, is a promising development for future spintronics and computing technologies.
  • Researchers have discovered that tunneling current can switch spin states in CrI layers, allowing for both spin-parallel and spin-antiparallel configurations based on the current's polarity and amplitude.
  • This approach enables multiple spin states to be controlled stochastically, which could lead to advancements in energy-efficient computing methods, such as probabilistic and neuromorphic computing, and fills a gap in the understanding of magnetism in two-dimensional materials.
View Article and Find Full Text PDF

The potential of memristive devices for applications in nonvolatile memory and neuromorphic computing has sparked considerable interest, particularly in exploring memristive effects in two-dimensional (2D) magnetic materials. However, the progress in developing nonvolatile, magnetic field-free memristive devices using 2D magnets has been limited. In this work, we report an electrostatic-gating-induced nonvolatile memristive effect in CrI-based tunnel junctions.

View Article and Find Full Text PDF

The spin-momentum locking of surface states in topological materials can produce a resistance that scales linearly with magnetic and electric fields. Such a bilinear magnetoelectric resistance (BMER) effect offers a new approach for information reading and field sensing applications, but the effects demonstrated so far are too weak or for low temperatures. This article reports the first observation of BMER effects in topological Dirac semimetals; the BMER responses were measured at room temperature and were substantially stronger than those reported previously.

View Article and Find Full Text PDF

Decoherence in quantum bits (qubits) is a major challenge for realizing scalable quantum computing. One of the primary causes of decoherence in qubits and quantum circuits based on superconducting Josephson junctions is the critical current fluctuation. Many efforts have been devoted to suppressing the critical current fluctuation in Josephson junctions.

View Article and Find Full Text PDF

Recent experiments show that topological surface states (TSS) in topological insulators (TI) can be exploited to manipulate magnetic ordering in ferromagnets. In principle, TSS should also exist for other topological materials, but it remains unexplored as to whether such states can also be utilized to manipulate ferromagnets. Herein, current-induced magnetization switching enabled by TSS in a non-TI topological material, namely, a topological Dirac semimetal α-Sn, is reported.

View Article and Find Full Text PDF

Recently, a newly discovered VIB group transition metal dichalcogenide (TMD) material, 2M-WS, has attracted extensive attention due to its interesting physical properties such as topological superconductivity, nodeless superconductivity, and anisotropic Majorana bound states. However, the techniques to grow high-quality 2M-WS bulk crystals and the study of their physical properties at the nanometer scale are still limited. In this work, we report a new route to grow high-quality 2M-WS single crystals and the observation of superconductivity in its thin layers.

View Article and Find Full Text PDF

CrBr is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr is in the range of 1.68-2.

View Article and Find Full Text PDF

We report the fabrication and measurement of top gated epitaxial graphene p-n junctions where exfoliated hexagonal boron nitride (h-BN) is used as the gate dielectric. The four-terminal longitudinal resistance across a single junction is well quantized at the von Klitzing constant [Formula: see text] with a relative uncertainty of 10. After the exploration of numerous parameter spaces, we summarize the conditions upon which these devices could function as potential resistance standards.

View Article and Find Full Text PDF

Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of BiTeSe TI thin films.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDCs) have offered experimental access to quantum confinement in one dimension. In recent years, metallic TMDCs like NbSe have taken center stage with many of them exhibiting interesting temperature-dependent properties such as charge density waves and superconductivity. In this paper, we perform a comprehensive optical analysis of NbSe by utilizing Raman spectroscopy, differential reflectance contrast, and spectroscopic ellipsometry.

View Article and Find Full Text PDF

Topological insulators (TIs), with their helically spin-momentum-locked topological surface states (TSSs), are considered promising for spintronics applications. Several recent experiments in TIs have demonstrated a current-induced electronic spin polarization that may be used for all-electrical spin generation and injection. We report spin potentiometric measurements in TIs that have revealed a long-lived persistent electron spin polarization even at zero current.

View Article and Find Full Text PDF

Semiconductor nanowires (SCNWs) provide a unique tunability of electro-optical property than their bulk counterparts (e.g., polycrystalline thin films) due to size effects.

View Article and Find Full Text PDF

Topological insulators (TIs) are an unusual phase of quantum matter with nontrivial spin-momentum-locked topological surface states (TSS). The electrical detection of spin-momentum-locking of TSS has been lacking till very recently. Many of the results are from samples with significant bulk conduction, such as Bi2Se3, where it can be challenging to separate the surface and bulk contribution to the spin signal.

View Article and Find Full Text PDF

Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.

View Article and Find Full Text PDF

Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass oscillations accompanied by quantized Hall resistances (R(xy)) in highly doped n-type Bi2Se3 with bulk carrier concentrations of few 10(19) cm(-3). Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation.

View Article and Find Full Text PDF

An atomic-scale study utilizing scanning tunneling microscopy (STM) in ultrahigh vacuum (UHV) is performed on large single crystalline graphene grains synthesized on Cu foil by a chemical vapor deposition (CVD) method. After thermal annealing, we observe the presence of periodic surface depressions (stripe patterns) that exhibit long-range order formed in the area of Cu covered by graphene. We suggest that the observed stripe pattern is a Cu surface reconstruction formed by partial dislocations (which appeared to be stair-rod-like) resulting from the strain induced by the graphene overlayer.

View Article and Find Full Text PDF

We report an atomically resolved scanning tunneling microscopy investigation of the edges of graphene grains synthesized on Cu foils by chemical vapor deposition. Most of the edges are macroscopically parallel to the zigzag directions of graphene lattice. These edges have microscopic roughness that is found to also follow zigzag directions at atomic scale, displaying many ∼120° turns.

View Article and Find Full Text PDF

We have performed scanning gate microscopy (SGM) on graphene field effect transistors (GFET) using a biased metallic nanowire coated with a dielectric layer as a contact mode tip and local top gate. Electrical transport through graphene at various back gate voltages is monitored as a function of tip voltage and tip position. Near the Dirac point, the response of graphene resistance to the tip voltage shows significant variation with tip position, and SGM imaging displays mesoscopic domains of electron-doped and hole-doped regions.

View Article and Find Full Text PDF

The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties.

View Article and Find Full Text PDF

We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at ∼430 °C) exhibit predominantly striped Moiré patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the sample (at 700-800 °C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene.

View Article and Find Full Text PDF

Silica coated magnetite (Fe3O4@SiO2) core-shell nanoparticles (NPs) with controlled silica shell thicknesses were prepared by a modified Stöber method using 20 nm hydrophilic Fe3O4 NPs as seeds. The core-shell NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and UV-Vis adsorption spectra (UV-Vis). The results imply that NPs consist of a crystalline magnetite core and an amorphous silica shell.

View Article and Find Full Text PDF

One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, synthetic techniques, characterizations and potential applications. To date, the synthesis of 1D boron nanostructures has been well-developed.

View Article and Find Full Text PDF