Peptide-based vaccines face limitations in immunogenicity and stability, and challenges in co-delivering antigens and adjuvants effectively. Virus-based nanoparticles, particularly M13 bacteriophage, present a promising solution due to their genetic modifiability, intrinsic adjuvanticity, and efficient antigen presentation capabilities. Here we developed a programmable M13 phage-based personalized cancer vaccine enabling single-step antigen-adjuvant assembly.
View Article and Find Full Text PDFOnly a minority of patients respond positively to cancer immunotherapy, and addressing this variability is an active area of immunotherapy research. Infiltration of tumors by immune cells is one of the most significant prognostic indicators of response and disease-free survival. However, the ability to noninvasively sample the tumor microenvironment for immune cells remains limited.
View Article and Find Full Text PDFShort-wave infrared (SWIR, 900-1700 nm) enables in vivo imaging with high spatiotemporal resolution and penetration depth due to the reduced tissue autofluorescence and decreased photon scattering at long wavelengths. Although small organic SWIR dye molecules have excellent biocompatibility, they have been rarely exploited as compared to their inorganic counterparts, mainly due to their low quantum yield. To increase their brightness, in this work, the SWIR dye molecules are placed in close proximity to gold nanorods (AuNRs) for surface plasmon-enhanced emission.
View Article and Find Full Text PDFFluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site-specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13-fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross-sections and moderate quantum yields.
View Article and Find Full Text PDFDetection of biological features at the cellular level with sufficient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require finding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body.
View Article and Find Full Text PDFFluorescence imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) features deep tissue penetration, reduced tissue scattering, and diminishing tissue autofluorescence. Here, NIR-II fluorescent probes, including down-conversion nanoparticles, quantum dots, single-walled carbon nanotubes, and organic dyes, are constructed into biocompatible nanoparticles using the layer-by-layer (LbL) platform due to its modular and versatile nature. The LbL platform has previously been demonstrated to enable incorporation of diagnostic agents, drugs, and nucleic acids such as siRNA while providing enhanced blood plasma half-life and tumor targeting.
View Article and Find Full Text PDFIn this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.
View Article and Find Full Text PDFTransition metal oxides are promising electrocatalysts for both water oxidations and metal-air batteries. Here, we report the virus-mediated synthesis of cobalt manganese oxide nanowires (NWs) to fabricate high capacity Li-O2 battery electrodes. Furthermore, we hybridized Ni nanoparticles (NPs) on bio Co3O4 NWs to improve the round trip efficiency as well as the cycle life of Li-O2 batteries.
View Article and Find Full Text PDFM13 bacteriophages act as versatile scaffolds capable of organizing single-walled carbon nanotubes and fabricating three-dimensional conducting nanocomposites. The morphological, electrical, and electrochemical properties of the nanocomposites are presented, as well as its ability to disperse and utilize single-walled carbon nanotubes effectively.
View Article and Find Full Text PDFLithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries.
View Article and Find Full Text PDFBy genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dye-sensitized solar cells (DSSCs). This has been accomplished by binding gold nanoparticles (AuNPs) to the virus proteins and encapsulating the AuNP-virus complexes in TiO2 to produce a plasmon-enhanced and nanowire (NW)-based photoanode.
View Article and Find Full Text PDFIn photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and panchromatic solar energy conversion using multiple-core-shell structured oxide-metal-oxide plasmonic nanoparticles.
View Article and Find Full Text PDFA synthetic method of using genetically engineered M13 virus to mineralize perovskite nanomaterials, particularly strontium titanate (STO) and bismuth ferrite (BFO), is presented. Genetically engineered viruses provide effective templates for perovskite nanomaterials. The virus-templated nanocrystals are small in size, highly crystalline, and show photocatalytic and photovoltaic properties.
View Article and Find Full Text PDFSecond near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.
View Article and Find Full Text PDFWe have investigated the effects of localized surface plasmons (LSPs) on the performance of dye-sensitized solar cells (DSSCs). The LSPs from Ag nanoparticles (NPs) increase the absorption of the dye molecules, allowing us to decrease the thickness of photoanodes, which improves electron collection and device performance. The plasmon-enhanced DSSCs became feasible through incorporating core-shell Ag@TiO(2) NPs into conventional TiO(2) photoanodes.
View Article and Find Full Text PDFThe performance of photovoltaic devices could be improved by using rationally designed nanocomposites with high electron mobility to efficiently collect photo-generated electrons. Single-walled carbon nanotubes exhibit very high electron mobility, but the incorporation of such nanotubes into nanocomposites to create efficient photovoltaic devices is challenging. Here, we report the synthesis of single-walled carbon nanotube-TiO(2) nanocrystal core-shell nanocomposites using a genetically engineered M13 virus as a template.
View Article and Find Full Text PDFA new approach involving self-assembling block copolymer micellar templates and gas-phase reactions to synthesize arrays of monodisperse III-nitrides nanocrystals in the size range of 1-5 nm with uniform spacings between the nanoparticles is demonstrated. The photoluminescence emission spectra revealed the GaN nanocrystals are in the quantum-confined regime. This method not only offers great promise for the controlled synthesis of arrays of ternary III-nitride nanocrystals but may also enable doping in binary nitrides.
View Article and Find Full Text PDFThe idea that randomly arranged supermolecular species incorporated in a network medium can ultimately create ordered structures at the surface may be counterintuitive. However, such order can be accommodated by regulating dynamic and equilibrium driving forces. Here, we present the ordering of M13 viruses, highly complex biomacromolecules, driven by competitive electrostatic binding, preferential macromolecular interactions and the rigid-rod nature of the virus systems during alternating electrostatic assembly.
View Article and Find Full Text PDFThe highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus.
View Article and Find Full Text PDF