Publications by authors named "Jieyin Zhang"

The direct growth of III-V quantum dot (QD) lasers on silicon substrate has been rapidly developing over the past decade and has been recognized as a promising method for achieving on-chip light sources in photonic integrated circuits (PICs). Up to date, O- and C/L-bands InAs QD lasers on Si have been extensively investigated, but as an extended telecommunication wavelength, the E-band QD lasers directly grown on Si substrates are not available yet. Here, we demonstrate the first E-band (1365 nm) InAs QD micro-disk lasers epitaxially grown on Si (001) substrates by using a III-V/IV hybrid dual-chamber molecular beam epitaxy (MBE) system.

View Article and Find Full Text PDF

Ge/Si nanowires are predicted to be a promising platform for spin and even topological qubits. While for large-scale integration of these devices, nanowires with fully controlled positions and arrangements are a prerequisite. Here, we have reported ordered Ge hut wires by multilayer heteroepitaxy on patterned Si (001) substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Delta doping (δ-doping) is a promising technique used in various advanced semiconductor applications, including transistors and UV photodetectors.
  • Researchers created a very thin δ-doping layer on silicon by treating PCl monolayers with flash lamp annealing, which resulted in a metallic state and the formation of a two-dimensional electron gas.
  • This innovative n-type δ-doping layer on a p-type silicon substrate enables the creation of highly sensitive solar-blind UV photodetectors, a feat typically achieved with materials like GaN or SiC.
View Article and Find Full Text PDF

III-V semiconductor lasers epitaxially grown on silicon, especially on a silicon-on-insulator (SOI) platform, have been considered one of the most promising approaches to realize an integrated light source for silicon photonics. Although notable achievements have been reported on InP-based 1.5 µm III-V semiconductor lasers directly grown on silicon substrates, phosphorus-free 1.

View Article and Find Full Text PDF

Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site-controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top-down nanofabrication and bottom-up self-assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported.

View Article and Find Full Text PDF

Direct epitaxial growth of O-band InAs/GaAs quantum-dot laser on Si substrates has been rapidly developing over the past few years. But most of current methodologies are not fully compatible with silicon-on-insulator (SOI) technology, which is the essential platform for silicon photonic devices. By implementing an in situ III-V/Si hybrid growth technique with (111)-faceted Si hollow structures, we demonstrate the first optically pumped InAs/GaAs quantum-dot microdisk laser on SOI substrates grown by molecular beam epitaxy (MBE).

View Article and Find Full Text PDF