In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment.
View Article and Find Full Text PDFDespite the fact that the high conductivity of two-dimensional laminated transition metal carbides/nitrides (MXenes) contributes to the outstanding electromagnetic interference (EMI) shielding by the reflection of electromagnetic waves (EWs), it is difficulty to improve EMI shielding by pursuing higher conductivity due to the limitation of intrinsic properties. Here, we achieve superior EMI shielding by introducing the absorption of EWs in MXenes with micro-sized wrinkles which are induced by abundant Ti vacancies under chemical etching. The shielding effectiveness is up to 107 dB at a thickness of 20 μm.
View Article and Find Full Text PDFPolymer-derived carbon nitrides based photocatalysts are very promising for solar water splitting, CO reduction and environmental remediation. However, these photocatalysts still suffer from low visible light utilization efficiency, rapid recombination of photogenerated charge carriers and slow transfer kinetics. Herein, we report a hydrogen peroxide-assisted hydrothermal strategy to synthesize one-dimensional oxygen-doped carbon nitrides (OCN) for photocatalytic hydrogen evolution.
View Article and Find Full Text PDFStrain within nanomaterials plays a crucial role in defining their physical and chemical properties. Geometrical phase analysis (GPA) was widely used to investigate deformation within nanomaterials. The traditional GPA method using geometric phases of two lattice fringes provides two-dimensional strain mapping, which is inapplicable to nanomaterials viewed along high-index zone axis.
View Article and Find Full Text PDFTwo-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.
View Article and Find Full Text PDF