Helicobacter pylori (H. pylori) infection affects nearly half of the global population, with biofilm formation and immune evasion contributing to chronic and recurrent infections, posing significant public health challenges. The robust immune evasion mechanisms and gene mutations of H.
View Article and Find Full Text PDFAlfalfa ( L.), a high-quality perennial legume forage, is pivotal in global animal husbandry and ecological systems. However, its growth and production are threatened by various abiotic stresses, including drought, salinity, low temperatures, and heavy metal toxicity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).
View Article and Find Full Text PDFSulfamethoxazole (SMX) and its antibiotic resistance genes (ARGs) are potential threats to public health. Microwave catalytic technology is an efficient environmental remediation technology, and a reasonable design of the catalyst enables the system to achieve an ideal remediation effect under low microwave power. In this study, a microwave catalyst (FeCO-2) that activates molecular oxygen (O) was designed on the basis of rational theoretical organization.
View Article and Find Full Text PDFTherapeutic challenges of chronic pulmonary infections caused by multidrug-resistant Pseudomonas aeruginosa (MDRP. aeruginosa) biofilms due to significantly enhanced antibiotic resistance. This resistance is driven by reduced outer membrane permeability, biofilm barriers, and excessive secretion of virulence factors.
View Article and Find Full Text PDFThe synthesis of efficient and stable peroxymonosulfate (PMS) catalysts by doping naturally degradable and functional group-rich chitosan (CS) with nonmetallic atoms remains challenging. In this study, an environmentally friendly electron-rich S-doped CS ferrocarbon material (Fe-S-CN) was synthesized via the sol-gel method, and the resulting material exhibited excellent catalytic activity (up to 98.6 % diclofenac sodium (DCF) removal in 5 min), wide pH applicability, environmental tolerance and renewability.
View Article and Find Full Text PDFThe existing remediation technologies for Cr(VI) contamination soil suffer from long processing times. Microwave catalysis is an efficient environmental remediation technology, and the reasonable design of microwave catalysts can enable a microwave catalytic system to rapidly complete the remediation of Cr(VI). In this study, a microwave catalyst, NRFC-3, with high microwave absorption performance and electron density was designed via a nitrogen enrichment strategy.
View Article and Find Full Text PDFMultidrug-resistant P. aeruginosa (MDR-P. aeruginosa), associated with elevated morbidity, mortality, and readmission rates, presents a formidable challenge to eradication due to its robust resistance to antimicrobial agents and biofilm formation.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2024
Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) has been demonstrated to be effective in treating patients with virus-induced acute respiratory distress syndrome (ARDS). However, whether the management of ECMO is different in treating H1N1 influenza and coronavirus disease 2019 (COVID-19)-associated ARDS patients remains unknown.
Methods: This is a retrospective cohort study.
Chronic pulmonary infection caused by Pseudomonas aeruginosa (P. aeruginosa) is a common lung disease with high mortality, posing severe threats to public health. Highly resistant biofilm and intrinsic resistance make P.
View Article and Find Full Text PDFBackground: This study aimed to investigate independent risk factors of postoperative hypoxemia in patients with acute type A aortic dissection (ATAAD).
Methods: A single-center retrospective study was conducted with enrolled 75 ATAAD patients following surgery, which were stratified into three groups on the basis of the postoperative PaO2/FiO2 ratio: severe hypoxemia group (PaO2/FiO2 ratio ≤100 mmHg); moderate hypoxemia group (100 mmHg < PaO2/FiO2 ratio ≤200 mmHg); and non-hypoxemia group (PaO2/FiO2 ratio >200 mmHg). The patient's demography, perioperative laboratory results, operative details, clinical outcomes were collected and analyzed.
In this study, an amphiphilic conjugate based on mPEG and cholesterol-modified chitosan with hydrazone bonds in the molecules (mPEG-CS-Hz-CH) was successfully synthesized. Using the polymer as the carrier, the paclitaxel (PTX)-loaded mPEG-CS-Hz-CH micelles were prepared by an ultrasonic probe method. The mean particle size and zeta potential of the optimized PTX-loaded micelles were 146 ± 4 nm and +21.
View Article and Find Full Text PDFBackground: To investigate the conversion ratio of tacrolimus switching from intravenous infusion to oral administration in patients after lung transplantation.
Methods: We retrospectively recruited patients received lung transplantation in the First Affiliated Hospital of Guangzhou Medical Hospital from January 2015 to June 2019. The blood concentration of tacrolimus administrated through intravenous infusion and oral administration were collected.
Background: This study was conducted to investigate whether Xuebijing injection can rectify the dysfunction of microcirculation in septic shock and assessed the microcirculatory parameters directly via orthogonal polarization spectral and software AVA 3.0.
Material And Methods: Anesthetized and mechanically ventilated beagle dogs were modeled for septic shock via lipopolysaccharide (LPS) intravenous injection.
Heparin is a soluble glycosaminoglycan largely used as an anti-coagulant drug and with well known anti‑inflammatory effects. However, heparin is currently not used as an anti‑inflammatory agent in the clinic due to a risk of bleeding as well as its complex mechanism of action. The underlying mechanism of the anti‑inflammatory action of heparin and its effector targets have remained to be fully elucidated.
View Article and Find Full Text PDFHeparin is a potent blood anticoagulant that has been demonstrated to attenuate inflammatory responses in sepsis. Sepsis is considered to be a microcirculation-mitochondrial distress syndrome. Azurocidin (AZU), a protein with strong heparin-binding potential that induces inflammatory responses and apoptosis, has been shown to increase the permeability of endothelial cells and induce the prognosis of sepsis.
View Article and Find Full Text PDFEndothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription.
View Article and Find Full Text PDF