In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or clustering can be obtained from the neutron scattering data, MD calculations clearly demonstrate that substantial amounts of ion pairs and small ion clusters (subnanometers to a few nanometers) do exist in the solutions of concentrations 0.
View Article and Find Full Text PDFIn order to prepare zwitterionic HILIC monolithic columns with high polarity, the highly hydrophilic monomer N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA) and crosslinker N,N'-methylenebisacrylamide (MBA) were employed for developing a novel sulfoalkylbetaine type stationary phase. The polymerization parameters were systematically optimized in order to obtain a satisfactory performance for column permeability, mechanical stability, hydrophilicity, efficiency and selectivity. Compared to the previously reported poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-ethylene dimethacrylate) (poly(SPE-co-EDMA)) monolith and the poly(SPDA-co-EDMA) monolith that we developed, a significantly enhanced hydrophilicity was obtained on the poly(SPDA-co-MBA) monolithic column, illustrated by the lowered critical composition of the mobile phase corresponding to the transition from the HILIC to the RP mode.
View Article and Find Full Text PDF