Whether a metallic ground state exists in a two-dimensional system beyond Anderson localization remains an unresolved question. We studied how quantum phase coherence evolves across superconductor-metal-insulator transitions through magnetoconductance quantum oscillations in nanopatterned high-temperature superconducting films. We tuned the degree of phase coherence by varying the etching time of our films.
View Article and Find Full Text PDFTwo-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS).
View Article and Find Full Text PDFHigh energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay.
View Article and Find Full Text PDFIn this study, we systematically investigated the composition dependence of the phase structure, microstructure, and electrical properties of (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf, Zr) ceramics synthesised by the conventional solid-state reaction method.
View Article and Find Full Text PDF