Publications by authors named "Jiewen Guan"

The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs.

View Article and Find Full Text PDF

The industrial application of pea protein is limited due to its poor gelation properties. This study aimed to evaluate the effects of psyllium husk powder (PHP) on improving the rheological, textural, and structural properties of heat-induced pea protein isolate (PPI) gel. Scanning electron microscopy (SEM), intermolecular forces analysis, the quantification of the surface hydrophobicity and free amino groups, and Fourier transform infrared spectroscopy (FTIR) were conducted to reveal the inner structures of PPI-PHP composite gels, conformational changes, and molecular interactions during gelation, thereby clarifying the underlying mechanism.

View Article and Find Full Text PDF

Real-time quaking-induced conversion (RT-QuIC) assays have become a common tool to detect chronic wasting disease (CWD) and are very sensitive provided the assay duration is sufficient. However, a prolonged assay duration may lead to non-specific signal amplification. The wide range of pre-defined assay durations in current RT-QuIC applications presents a need for methods to optimize the RT-QuIC assay.

View Article and Find Full Text PDF

Introduction: Decontamination of farms affected by bovine tuberculosis could be very challenging during outbreaks occurring in the winter with freezing temperatures. Steam treatment has been of practical interest, but information is needed on whether such treatment is able to inactivate the causative agent, . This study was to evaluate the use of pressurized steam for inactivation of , a surrogate for on various surfaces.

View Article and Find Full Text PDF

This announcement reports the complete genome sequence of a non-Shiga toxin-producing Escherichia coli strain that was isolated from municipal biosolids collected from a Canadian wastewater treatment plant. This strain contains multiple metal, antimicrobial, and heat resistance genes, as determined by genome sequencing, and could be a useful bacterial model for future studies.

View Article and Find Full Text PDF

Community detection aims at finding all densely connected communities in a network, which serves as a fundamental graph tool for many applications, such as identification of protein functional modules, image segmentation, social circle discovery, to name a few. Recently, nonnegative matrix factorization (NMF)-based community detection methods have attracted significant attention. However, most existing methods neglect the multihop connectivity patterns in a network, which turn out to be practically useful for community detection.

View Article and Find Full Text PDF

Community detection aims at partitioning a network into several densely connected subgraphs. Recently, nonnegative matrix factorization (NMF) has been widely adopted in many successful community detection applications. However, most existing NMF-based community detection algorithms neglect the multihop network topology and the extreme sparsity of adjacency matrices.

View Article and Find Full Text PDF

The almond industry suffers product losses caused by mold growth and toxin contamination. Gaseous chlorine dioxide (ClO) has the potential for postharvest reduction of mycotoxic Aspergillus flavus. In this study, almonds inoculated with A.

View Article and Find Full Text PDF

Unsupervised feature selection has attracted remarkable attention recently. With the development of data acquisition technology, multi-dimensional tensor data has been appeared in enormous real-world applications. However, most existing unsupervised feature selection methods are non-tensor-based which results the vectorization of tensor data as a preprocessing step.

View Article and Find Full Text PDF

(. ) causes an estimated 1600 foodborne illnesses and 260 deaths annually in the U.S.

View Article and Find Full Text PDF

Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments.

View Article and Find Full Text PDF

Due to the "curse of dimensionality" issue, how to discard redundant features and select informative features in high-dimensional data has become a critical problem, hence there are many research studies dedicated to solving this problem. Unsupervised feature selection technique, which does not require any prior category information to conduct with, has gained a prominent place in preprocessing high-dimensional data among all feature selection techniques, and it has been applied to many neural networks and learning systems related applications, e.g.

View Article and Find Full Text PDF

Use of sea water as a diluent for disinfectants has been of practical interest for control of aquaculture disease outbreaks in sea where fresh water is limited. This study evaluated the use of natural sea water (NSW), artificial sea water (ASW), or standard hard water (SHW) as a diluent for preparation of accelerated hydrogen peroxide (AHP) solutions against an avian influenza virus, a surrogate for the infectious salmon anemia virus. AHP solutions containing 0.

View Article and Find Full Text PDF

Our recent studies and several publications suggest that the low water activity (a) of oil in thermal processing might be a major contributing factor towards the increased thermal resistance of bacteria in oils. In this study, we developed a reliable method to measure the water activity of oil by measuring the equilibrium relative humidity in a small headspace. Using this method, water activity of peanut oil was found to decrease exponentially with increasing temperature.

View Article and Find Full Text PDF

Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to the dissemination of antibiotic-resistance genes in the gut microbiota and the development of antibiotic-resistant bacterial infection, a significant threat to animal and public health. Food or water may be contaminated with multiple resistant bacteria, but animal models on gene transfer were mainly based on single-strain infections. In this study, we investigated the mobility of β-lactam resistance following infection with single- versus multi-strain of resistant bacteria under ampicillin treatment.

View Article and Find Full Text PDF

To assess the impact of different routes of inoculation on experimental infection of avian influenza (AI) viruses in chickens, this study compared virus replication and cytokine gene expression in respiratory and gastrointestinal organ tissues of chickens, which were inoculated with four low pathogenic subtypes, H6N1, H10N7, H10N8, and H13N6 AI viruses via the aerosol, intranasal, and oral routes respectively. Aerosol inoculation with the H6N1, H10N7, and H10N8 viruses significantly increased viral titres and upregulated the interferon (IFN)-γ, interleukin (IL)-6, and IL-1β genes in the trachea and lung tissues compared to intranasal or oral inoculation. Furthermore, one or two out of six chickens died following exposure to aerosolized H6N1 or H10N8 virus respectively.

View Article and Find Full Text PDF

The H9N2 strains of avian influenza viruses (AIVs) circulate worldwide in poultry and cause sporadic infection in humans. To better understand the evolution of these viruses while circulating in poultry, an H9N2 chicken isolate was passaged 19 times in chickens aerosol inoculation. Whole-genome sequencing showed that the viruses from the initial stock and those after the 8th and 19th passages (P0, P8, and P19) all had the same monobasic cleavage site in the hemagglutinin (HA), typical for viruses of low pathogenicity.

View Article and Find Full Text PDF

This study related the replication of an H9N2 avian influenza virus in chickens to the induction of host acute immune response after aerosol or intranasal inoculation with the virus. On 1, 2, 4, and 7 days postinoculation (dpi), oropharyngeal swabs and tissue specimens of trachea, lungs, spleen, and cecal tonsils were collected for quantification of viral RNA. Expression of cytokine genes in lungs, spleen, and cecal tonsils was quantified by reverse transcriptase-PCR.

View Article and Find Full Text PDF

Avian influenza outbreaks have occurred during winter months, and effective disinfection of poultry premises at freezing temperatures is needed. The commercial disinfectants Virkon and Accel, supplemented with an antifreeze agent [propylene glycol (PG), methanol (MeOH), or calcium chloride (CaCl₂)], were evaluated for their effectiveness in killing avian influenza virus (AIV) at -20°C or 21°C. An AIV suspension was applied to stainless steel disks, air-dried, and covered with a disinfectant or antifreeze agent for 5 to 30 min.

View Article and Find Full Text PDF

A low pathogenic avian influenza virus (LPAI H9N2) was administered to 3-wk-old chickens by aerosol exposure, intranasal inoculation, and by oral inoculation. Tests for virus were by in ovo assay and by real-time reverse-transcriptase PCR. The aerosol dosage was determined by aerosolizing virus into a chamber when it was empty and when it contained chickens.

View Article and Find Full Text PDF

This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures.

View Article and Find Full Text PDF

Composting was investigated as a means for safe disposal of organic waste containing bacteria that carry transgenes in recombinant plasmids. To generate model recombinant plasmids, a mobile IncQ plasmid, RSF1010, and a non-mobile plasmid, pGFP, were genetically modified to carry a DNA segment encoding both green fluorescent protein and kanamycin resistance and were designated as RSF1010-GFPK and pGFPK. Escherichia coli (E.

View Article and Find Full Text PDF

During outbreaks of infectious animal diseases, composting may be an effective method of disposing of mortalities and potentially contaminated manure. Duplicate biosecure structures containing 16 cattle (Bos taurus) mortalities (343 kg average weight) were constructed with carcasses placed on a 40-cm straw layer and overlaid with 160 cm of feedlot manure. At a depth of 80 cm (P80), compost heated rapidly, exceeding 55 degrees C after 8 d and maintained temperatures of 55 to 65 degrees C for > 35 d.

View Article and Find Full Text PDF

A phage replication-competitive enzyme-linked immunosorbent assay (PR-cELISA) was developed for the detection of multiple antibiotic-resistant Salmonella Typhimurium DT104. In the PR-cELISA procedure, a phage, BP1, was inoculated into a log-phase bacterial culture at a ratio of 1:100. After a 3-h incubation of the mixture, BP1 replication was measured by cELISA based on the competitive binding between BP1 and biotinylated BP1 to Salmonella Typhimurium smooth lipopolysaccharide.

View Article and Find Full Text PDF

In order to make regulations that safeguard food and the environment, an understanding of the fate oftransgenes from genetically modified (GM) plants is of crucial importance. A compost experiment including mature transgenic corn plants and seeds of event Bt 176 (Zea mays L.) was conducted to trace the fate of the transgene cryIA(b) during the period of composting.

View Article and Find Full Text PDF