Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
August 2024
IEEE J Biomed Health Inform
September 2024
Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals.
View Article and Find Full Text PDFObjective: Myocardial infarction (MI) causes rapid and permanent damage to the heart muscle. Therefore, it can deteriorate the myocardial structure and function if not timely diagnosed and treated. However, it is difficult to determine the precise localization of MI based on vectorcardiogram (VCG) due to the existing studies ignore the spatiotemporal features of VCG.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
August 2022
ST segment morphology is closely related to cardiovascular disease. It is used not only for characterizing different diseases, but also for predicting the severity of the disease. However, the short duration, low energy, variable morphology and interference from various noises make ST segment morphology classification a difficult task.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
February 2021
Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2021
Background And Objective: Myocardial infarction (MI) is a critical acute ischemic heart disease, which can be early diagnosed by electrocardiogram (ECG). However, the most research of MI localization pay more attention on the specific changes in every ECG lead independent. In our study, the research envisages the development of a novel multi-lead MI localization approach based on the densely connected convolutional network (DenseNet).
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
August 2018
Electrocardiogram (ECG) is easily submerged in noise of the complex environment during remote medical treatment, and this affects the intelligent diagnosis of cardiovascular diseases. Considering this situation, this paper proposes an echo state network (ESN) denoising algorithm based on recursive least square (RLS) for ECG signals. The algorithm trains the ESN through the RLS method, and can automatically learn the deep nonlinear and differentiated characteristics in the noisy ECG data, and then the network can use these characteristic to separate out clear ECG signals automatically.
View Article and Find Full Text PDF