Publications by authors named "Jierui Zhou"

Article Synopsis
  • Successfully demonstrated a new method for selectively alkynylating 2-pyridones using bromoalkynes with Co(III) or Ru(II) catalysts.
  • The reaction is efficient, yielding a variety of 2-pyridone derivatives with up to 95% success rate over more than 40 examples.
  • This approach allows the use of 2-pyridone as a weak directing group for targeting nearby aryl C-H bonds, expanding synthetic options.
View Article and Find Full Text PDF

With the annual global electricity production exceeding 30,000 TWh, the safe transmission of electric power has been heavily relying on SF, the most potent industrial greenhouse gas. While promising SF alternatives have been proposed, their compatibilities with materials used in gas-insulated equipment (GIE) must be thoroughly studied. This is particularly true as the emerging SF alternatives generally leverage their relatively higher reactivity to achieve lower global warming potentials (GWPs).

View Article and Find Full Text PDF
Article Synopsis
  • Perovskite solar cells (PSCs) are enhanced through modifications and passivation, focusing on interface adjustments and bulk doping.
  • Fluorine (F)-containing materials are preferred due to their water-repellent properties and ability to bond with other materials.
  • The review outlines advancements in using F materials to improve the efficiency and stability of PSCs, highlighting their potential in future developments.
View Article and Find Full Text PDF

High-temperature flexible polymer dielectrics are critical for high density energy storage and conversion. The need to simultaneously possess a high bandgap, dielectric constant and glass transition temperature forms a substantial design challenge for novel dielectric polymers. Here, by varying halogen substituents of an aromatic pendant hanging off a bicyclic mainchain polymer, a class of high-temperature olefins with adjustable thermal stability are obtained, all with uncompromised large bandgaps.

View Article and Find Full Text PDF

The electronic band structure, especially the defect states at the conduction band tail, dominates electron transport and electrical degradation of a dielectric material under an extremely high electric field. However, the electronic band structure in a dielectric is barely well studied due to experimental challenges in detecting the electrical conduction to an extremely high electric field, i.e.

View Article and Find Full Text PDF

Exploration of novel polymer dielectrics exhibiting high electric-field stability and high energy density with high efficiency at elevated temperatures is urgently needed for ever-demanding energy-storage technologies. Conventional high-temperature polymers with conjugated backbone structures cannot fulfill this demand due to their deteriorated performance at elevated electric fields. Here, in search of new polymer structures, we have explored the effect of fluorine groups on the energy-storage properties of polyoxanorbornene imide polymers with simultaneous wide band gap and high glass transition temperature ().

View Article and Find Full Text PDF

Polymer-based dielectrics are essential components in electrical and power electronic systems for high power density storage and conversion. A mounting challenge for polymer dielectrics is how to maintain their electrical insulation at not only high electric fields but also elevated temperatures, in order to meet the growing needs for renewable energies and grand electrifications. Here, a sandwiched barium titanate/polyamideimide nanocomposite with reinforced interfaces via two-dimensional nanocoatings is presented.

View Article and Find Full Text PDF

Polymer dielectrics are essential for advanced electrical and electronic power systems due to their ultrafast charge-discharge rate. However, a long-standing challenge is to maintain their dielectric performance at high temperatures. Here, a layered barium titanate/polyamideimide nanocomposite reinforced with rationally designed interfaces is reported for high-temperature high-energy-density dielectrics.

View Article and Find Full Text PDF

Flexible large bandgap dielectric materials exhibiting ultra-fast charging-discharging rates are key components for electrification under extremely high electric fields. A polyoxafluoronorbornene (-POFNB) with fused five-membered rings separated by alkenes and flexible single bonds as the backbone, rather than conjugated aromatic structure typically for conventional high-temperature polymers, is designed to achieve simultaneously high thermal stability and large bandgap. In addition, an asymmetrically fluorinated aromatic pendant group extended from the fused bicyclic structure of the backbone imparts -POFNB with enhanced dipolar relaxation and thus high dielectric constant without sacrificing the bandgap.

View Article and Find Full Text PDF

Flexible polymer dielectrics tolerant to electric field and temperature extremes are urgently needed for a spectrum of electrical and electronic applications. Given the complexity of the dielectric breakdown mechanism and the vast chemical space of polymers, the discovery of suitable candidates is nontrivial. We have laid the foundation for a systematic search of the polymer chemical space, which starts with "gold-standard" experimental measurements and data on the temperature-dependent breakdown strength () for a benchmark set of commercial dielectric polymer films.

View Article and Find Full Text PDF

The surface charge accumulation is very likely to trigger the surface flashover, which limits the large-scale application of DC GIL/GIS. This article comprehensively reviews the effect of six factors, including insulator-electrode shape, surface roughness of the insulator and conductor, metal particles, temperature, humidity, and gas type, on the insulator surface charging property. Furthermore, three models i.

View Article and Find Full Text PDF

Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear.

View Article and Find Full Text PDF

Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp8aogub17kjcpl80hvkdphnmf86eqrvk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once