Recently, the rising demand for data-based applications has driven the convergence of image sensing, memory, and computing unit interfaces. While specialized electronic hardware has spurred advancements in the in-memory and in-sensor computing, integrating the entire signal-processing chain into a single device still faces significant challenges. Here, a reconfigurable all-optical controlled memristor with the selector-free feature is demonstrated.
View Article and Find Full Text PDFRealization of dendric signal processing in the human brain is of great significance for spatiotemporal neuromorphic engineering. Here, we proposed an ionic dendrite device with multichannel communication, which could realize synaptic behaviors even under an ultralow action potential of 80 mV. The device not only could simulate one-to-one information transfer of axons but also achieve a many-to-one modulation mode of dendrites.
View Article and Find Full Text PDFIn recent years, memristors have successfully demonstrated their significant potential in artificial neural networks (ANNs) and neuromorphic computing. Nonetheless, ANNs constructed by crossbar arrays suffer from cross-talk issues and low integration densities. Here, we propose an eight-layer three-dimensional (3D) vertical crossbar memristor with an ultrahigh rectify ratio (RR > 10) and an ultrahigh nonlinearity (>10) to overcome these limitations, which enables it to reach a >1 Tb array size without reading failure.
View Article and Find Full Text PDFResearching optoelectronic memristors capable of integrating sensory and processing functions is essential for advancing the development of efficient neuromorphic vision. Here, we experimentally demonstrated an all-optical controlled and self-rectifying optoelectronic memristor (OEM) crossbar array with the function of multilevel storage under light stimuli. The NiO/TiO device exhibits an ultrahigh (>10) rectifying ratio (RR) thus overcoming the presence of sneak current.
View Article and Find Full Text PDF