Publications by authors named "Jieran Yao"

The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed.

View Article and Find Full Text PDF

Mounting evidence indicates that inhibition of microglial activation and neuronal pyroptosis plays important roles in brain function recovery after subarachnoid hemorrhage (SAH). LDC7559 is a newly discovered gasdermin D (GSDMD) inhibitor. Previous studies have demonstrated that LDC7559 could inhibit microglial proliferation and pyroptosis.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammatory responses play important roles in secondary neurological injury after traumatic brain injury (TBI). The TGF-β pathway participates in the regulation of M1/M2 phenotype transformation of microglia. TGF-β can activate the Smad pathway by binding to TGF-βRs, which is regulated by the cleavage function of A disintegrin and metalloproteinase 17 (ADAM17).

View Article and Find Full Text PDF

Injured bone regeneration requires a systemically and carefully orchestrated series of events involving inflammation, angiogenesis, and osteogenesis. Thus, we designed a multifunctional cell-supporting and drug-retarding dual-pore system: cell-free fat extract (Ceffe)-mesoporous silica nanoparticle (MSN)@poly(lactic--glycolic acid) (PLGA) (Ceffe-MSN@PLGA) to mimic the developmental spatial structure, the microenvironment of bone regeneration and integration during injured bone regeneration. In this system, a macroporous scaffold (pore size 200-250 μm) of PLGA is combined with mesoporous MSN (pore size 2-50 nm), aiming at realizing the slow release of Ceffe.

View Article and Find Full Text PDF

Bacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized.

View Article and Find Full Text PDF