Human neural organoids, generated from pluripotent stem cells in vitro, are useful tools to study human brain development, evolution and disease. However, it is unclear which parts of the human brain are covered by existing protocols, and it has been difficult to quantitatively assess organoid variation and fidelity. Here we integrate 36 single-cell transcriptomic datasets spanning 26 protocols into one integrated human neural organoid cell atlas totalling more than 1.
View Article and Find Full Text PDFWe present a CRISPR-based multi-gene knockout screening system and toolkits for extensible assembly of barcoded high-order combinatorial guide RNA libraries en masse. We apply this system for systematically identifying not only pairwise but also three-way synergistic therapeutic target combinations and successfully validate double- and triple-combination regimens for suppression of cancer cell growth and protection against Parkinson's disease-associated toxicity. This system overcomes the practical challenges of experimenting on a large number of high-order genetic and drug combinations and can be applied to uncover the rare synergistic interactions between druggable targets.
View Article and Find Full Text PDF