Plant-derived biomaterials have great application prospects in solving environmental pollution and sustainable resource utilization, but the insufficient mechanical strength and lack of functional responsiveness often limit their further development. Inspired by natural small molecules functionalization, a vacuum-assisted filtration nanofibrillated cellulose (NFC)-based film with excellent antibacterial properties, mechanical strength, and electrothermal/photothermal dual-responsiveness was fabricated. As a natural bioactive molecule, antibacterial cinnamaldehyde (CA) is grafted onto tannic acid (TA) rich in pyrogallols via a small molecule self-assembly strategy, and then co-assembled with zinc acetate (ZA) through ion crosslinking to synthesize the functional TACA@ZA nanospheres.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal carbides (TiCT MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized.
View Article and Find Full Text PDFBioplastics are considered as potential alternatives to non-renewable and non-biodegradable petroleum-based plastics. Inspired by ionic and amphiphilic properties of mussel protein, we proposed a versatile and facile strategy for the fabrication of a high-performance chitosan (CS) composite film. This technique incorporates a cationic hyperbranched polyamide (QHB) and a supramolecular system based on the lignosulphonate (LS)-functionalized cellulose nanofibrils (CNF) (LS@CNF) hybrids.
View Article and Find Full Text PDF