Publications by authors named "Jien-Wei Yeh"

High-entropy-alloy (HEA) nanocrystals hold immense potential for catalysis, offering virtually unlimited alloy combinations through the inclusion of at least five constituent elements in varying ratios. However, general and effective strategies for synthesizing libraries of HEA nanocrystals with controlled surface atomic structures remain scarce. In this study, a transferable strategy for developing a library of facet-controlled seed@HEA nanocrystals through seed-mediated growth is presented.

View Article and Find Full Text PDF

Blending multiple polymers together to form the so-called "high-entropy polymers (HEPs)" can generate the effects of molecular dispersion in addition to suppressing polymer phase separation. We embedded a semiconducting polymer (conjugated polymers, CPs) in an optically inert matrix composed of polymer species and found that a molecule-level dispersion is attained in HEPs defined as ≥ 5. In the regime of dilute CP concentrations, the photonic properties vary widely in the = 1 matrices owing to diverse solubility parameters, but the distribution narrows with , and the CP starts to exhibit behaviors of molecule-level dispersion at ≥ 5, where the matrix polymers compete with each other to exert direct influences on the embedded CP.

View Article and Find Full Text PDF

In this study, a new lightweight Al-Ti-Ta alloy was developed through a synergistic approach, combining CALPHAD methodology and entropy-driven design. Following compositional optimization, the AlTiTa (at.%) alloy was fabricated and isothermally heat-treated at 475 °C for 24 h to attain equilibrium.

View Article and Find Full Text PDF

The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied by determining the activation energy for the solubility and the solution enthalpy of H in the WMoTaNbV alloy.

View Article and Find Full Text PDF

High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the 'four core effects' - high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects - which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials.

View Article and Find Full Text PDF

A high configurational entropy, achieved through a proper design of compositions, can minimize the Gibbs free energy and stabilize the quasi-equilibrium phases in a solid-solution form. This leads to the development of high-entropy materials with unique structural characteristics and excellent performance, which otherwise could not be achieved through conventional pathways. This work develops a high-entropy nonlinear dielectric system, based on the expansion of lead magnesium niobate-lead titanate.

View Article and Find Full Text PDF

The major challenge of high-temperature shape memory alloys (SMAs) is the collocation of phase transition temperatures (TTs: M, M, A, A) with the mechanical properties required for application. Previous research has shown that the addition of Hf and Zr into NiTi shape memory alloys (SMAs) increases TTs. Modulating the ratio of Hf and Zr can control the phase transformation temperature, and applying thermal treatments can also achieve the same goal.

View Article and Find Full Text PDF

In this study, we propose a phenomenological model to extend McMillan's results on a coupling strength equal to 2. We investigate possible strategies to enhance superconductivity by tuning the phonon frequency, carrier number, or pressure. In particular, we show that the critical coupling constants corresponding to the phonon frequency, carrier number, or pressure determine whether the variation of the critical temperature is positive or negative.

View Article and Find Full Text PDF

Based on multi-component alloys using precipitation hardening, a Cu-Ni-Si-Fe copper alloy was prepared and studied for hardness, electrical conductivity, and wear resistance. Copper Nickel Silicon (Cu-Ni-Si) intermetallic compounds were observed as precipitates, leading to an increase in mechanical and physical properties. Further, the addition of Fe was discussed in intermetallic compound formation.

View Article and Find Full Text PDF

High entropy alloys are a promising new class of metal alloys with outstanding radiation resistance and thermal stability. The interaction with hydrogen might, however, have desired (H storage) or undesired effects, such as hydrogen-induced embrittlement or tritium retention in the fusion reactor wall. High entropy alloy WMoTaNbV and bulk W samples were used to study the quantity of irradiation-induced trapping sites and properties of D retention by employing thermal desorption spectrometry, secondary ion mass spectrometry, and elastic recoil detection analysis.

View Article and Find Full Text PDF

Over 150 refractory high-entropy alloys (RHEAs) have been proposed in the last decade. Early alloys such as MoNbTaW and MoNbTaVW still show an unparalleled yield strength of approximately 400 MPa at 1600°C. However, RHEAs with even elevated high-temperature strength are necessary in aerospace vehicles and nuclear reactors to cope with advanced technology in the future.

View Article and Find Full Text PDF

Co-free body-centered cubic (bcc) high-entropy alloys (HEAs) are prepared, and the elevated mechanical property and corrosion property of the AlCrFeMnNiMo (x = 0 and 0.1) alloys are studied. The Vickers hardness (HV) of the as-homogenized state is between HV 350 and HV 400.

View Article and Find Full Text PDF

Subjecting a multicomponent alloy to cyclic torsion can create a strong, ductile material.

View Article and Find Full Text PDF

Although high-entropy alloys have been intensively studied in the past decade, there are still many requirements for manufacturing processes and application directions to be proposed and developed, but most techniques are focused on high-entropy bulk materials and surface coatings. We fabricated high-entropy ceramic (HEC) nanomaterials using simple pulsed laser irradiation scanning on mixed salt solutions (PLMS method) under low-vacuum conditions. This method, allowing simple operation, rapid manufacturing, and low cost, is capable of using various metal salts as precursors and is also suitable for both flat and complicated 3D substrates.

View Article and Find Full Text PDF

A hierarchical microstructure strengthened high entropy superalloy (HESA) with superior cost specific yield strength from room temperature up to 1,023 K is presented. By phase transformation pathway through metastability, HESA possesses a hierarchical microstructure containing a dispersion of nano size disordered FCC particles inside ordered L1 precipitates that are within the FCC matrix. The average tensile yield strength of HESA from room temperature to 1,023 K could be 120 MPa higher than that of advanced single crystal superalloy, while HESA could still exhibit an elongation greater than 20%.

View Article and Find Full Text PDF

Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials.

View Article and Find Full Text PDF

Although refractory high entropy alloys (RHEAs) have shown potentials to be developed as structural materials for elevated temperature applications, most of the reported oxidation behaviours of RHEA were associated with short term exposures for only up to 48 hours, and there is a lack of understanding on the oxidation mechanism of any RHEA to-date. In this work, by using thermogravimetric analysis, isothermal oxidation was conducted on a novel RHEA at 1000 °C and 1100 °C for up to 200 hours, which is an unprecedented testing duration. The external oxide layer strongly influenced the weight gain behaviours, and it consisted of CrTaO-based oxide with some dispersion of AlO and CrO.

View Article and Find Full Text PDF

Nowadays refractory high-entropy alloys (RHEAs) are regarded as great candidates for the replacement of superalloys at high temperature. To design a RHEA, one must understand the pros and cons of every refractory element. However, the elemental effect on mechanical properties remains unclear.

View Article and Find Full Text PDF

This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys.

View Article and Find Full Text PDF

This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TiFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model.

View Article and Find Full Text PDF

In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation.

View Article and Find Full Text PDF

Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage.

View Article and Find Full Text PDF

We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole.

View Article and Find Full Text PDF