Publications by authors named "Jieliang Zhao"

The integration of electronic stimulation devices with insects in the context of cyborg insect systems has great application potential, particularly in the fields of environmental monitoring, urban surveillance, and rescue missions. Despite considerable advantages compared to the current robot technology, including flexibility, durability, and low energy consumption, this integration faces certain challenges related to the potential risk of charge accumulation caused by prolonged and repetitive electrical stimulations. To address these challenges, this study proposes a universal system for remote signal output control using infrared signals.

View Article and Find Full Text PDF

Efficient and stable heat dissipation structure is crucial for improving the convective heat transfer performance of thermal protection systems (TPSs) for hypersonic aircraft. However, the heat dissipation wall of the current TPS is limited by a single material and structure, inefficiently dissipating the large amount of accumulated heat generated during the high-speed maneuvering flight of hypersonic aircraft. Here, a convection cooling channel structure of TPS is proposed, which is an innovative multi-level structure inspired by the natural honeycomb.

View Article and Find Full Text PDF

Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures.

View Article and Find Full Text PDF

Biomachine hybrid robots have been proposed for important scenarios, such as wilderness rescue, ecological monitoring, and hazardous area surveying. The energy supply unit used to power the control backpack carried by these robots determines their future development and practical application. Current energy supply devices for control backpacks are mainly chemical batteries.

View Article and Find Full Text PDF

The dynamic adhesive systems in nature have served as inspirations for the development of intelligent adhesive surfaces. However, the mechanisms underlying the rapid controllable contact adhesion observed in biological systems have never been adequately explained. Here, the control principle for the unfolding adhesive footpads (alterable contact area) of honeybees is investigated.

View Article and Find Full Text PDF

Structural stabilization for a membrane structure under high-frequency vibration is still a recognized problem. In nature, honeybee wings with non-uniform material properties demonstrate excellent anti-interference ability. However, the correlation between the structural stabilization and mechanical properties of insect wings has not been completely verified.

View Article and Find Full Text PDF

Introduction: Insect cyborg is a kind of novel robot based on insect-machine interface and principles of neurobiology. The key idea is to stimulate live insects by specific stimuli; thus, the flight trajectory of insects could be controlled as anticipated. However, the neuroregulatory mechanism of insect flight has not been elucidated completely at present.

View Article and Find Full Text PDF

Most flower-visiting insects have evolved highly specialized morphological structures to facilitate nectar feeding. As a typical pollinator, the honey bee has specialized mouth parts comprised of a pair of galeae, a pair of labial palpi, and a glossa, to feed on the nectar by the feeding modes of lapping or sucking. To extensively elucidate the mechanism of a bee's feeding, we should combine the investigations from glossa morphology, feeding behaviour, and mathematical models.

View Article and Find Full Text PDF

Abdominal sections of honeybees undergo numerous reciprocating motions during their lifetime. However, the overlapped contact areas adjacent to the abdominal sections have a shallow wear extent, a physical mechanism that remains obscure to date. Therefore, this study explored a biofrictional reduction model based on a solid surface texture and the hairy surface of the honeybee abdomen.

View Article and Find Full Text PDF

The abdominal intersegmental structures allow insects, such as honey bees, dragonflies, butterflies, and drosophilae, to complete diverse behavioral movements. In order to reveal how the complex abdominal movements of these insects are produced, we use the honey bee (Apis mellifera L.) as a typical insect to study the relationship between intersegmental structures and abdominal motions.

View Article and Find Full Text PDF

Introduction: Insects use their antennae to detect food, mates, and predators, mainly via olfactory recognition of specific volatile compounds. Honeybees also communicate, learn complex tasks, and show adaptable behavior by recognizing and responding to specific odors. However, the relationship between the electroantennogram and the passion of honeybee has not been determined.

View Article and Find Full Text PDF

The Stewart platform is a typical parallel mechanism, used extensively in flight simulators with six degrees of freedom. It is rarely found in animals and has never been reported to regulate and control physiological activities. Now an equivalent Stewart platform structure is found in the honey bee (Hymenoptera: Apidae: Apis mellifera L.

View Article and Find Full Text PDF

Honeybee drinking is facilitated by a "mop-like" tongue, which helps honeybees suck in the sucrose solution from the environment. However, the liquid-transport mechanism from the pharynx to the crop, especially the natural link between abdominal pumping and dipping behavior on the sucrose solution intake, remains obscure. A significant increase in abdominal pumping frequency is observed when honeybees drink the sucrose solution.

View Article and Find Full Text PDF

The wings of honeybees (Apis mellifera L.) usually produce bending and torsional deformations during flapping wing movement. These deformations endow honeybees with perfect aerodynamic control to escape predators and exploit scattered resources.

View Article and Find Full Text PDF

Insects are well equipped in walking on complex three-dimensional terrain, allowing them to overcome obstacles or catch prey. However, the gait transition for insects steering on a wall remains unexplored. Here, we find that honeybees adopted a tetrapod gait to change direction when climbing a wall.

View Article and Find Full Text PDF

The folded intersegmental membrane is a structure that interconnects two adjacent abdominal segments; this structure is distributed in the segments of the honey bee abdomen. The morphology of the folded intersegmental membrane has already been documented. However, the ultrastructure of the intersegmental membrane and its assistive role in the telescopic movements of the honey bee abdomen are poorly understood.

View Article and Find Full Text PDF

Many animals use their mouthparts or tongue to feed themselves rapidly and efficiently. Honeybees have evolved specialized tongues to collect nectar from flowers. Nectar-intake movements consist of rapid protraction and retraction of glossa from a tube formed by the maxillae and labial palps.

View Article and Find Full Text PDF

Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees.

View Article and Find Full Text PDF

The stinger is a very small and efficient device that allows honeybees to perform two main physiological activities: repelling enemies and laying eggs for reproduction. In this study, we explored the specific characteristics of stinger penetration, where we focused on its movements and the effects of it microstructure. The stingers of Italian honeybees (Apis mellifera ligustica) were grouped and fixed onto four types of cubic substrates, before pressing into different substrates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu98c67m5a0enpn1rpckp015po25m3ha2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once