Study Question: In addition to chromosomal euploidy, can the transcriptome of blastocysts be used as a novel predictor of embryo implantation potential?
Summary Answer: This retrospective analysis showed that based on differentially expressed genes (DEGs) between euploid blastocysts which resulted and did not result in a clinical pregnancy, machine learning models could help improve implantation rates by blastocyst optimization.
What Is Known Already: Embryo implantation is a multifaceted process, with implantation loss and pregnancy failure related not only to blastocyst euploidy but also to the intricate dialog between blastocyst and endometrium. Although in vitro studies have revealed the characteristics of trophectoderm (TE) differentiation in implanted blastocysts and the function of TE placentation at the implantation site, the precise molecular mechanisms of embryo implantation and their clinical application remain to be fully elucidated.
In clinical in vitro fertilization (IVF), the prevailing method for PGT-A requires biopsy of a few cells from the trophectoderm (TE). This is the lineage that forms the placenta. This method, however, requires specialized skills, is invasive, and suffers from false positives and negatives because the chromosome numbers in the TE and the inner cell mass (ICM), which develops into the fetus, are not always the same.
View Article and Find Full Text PDFNowadays, most of the preimplantation genetic testing (PGT) is performed with a strategy of comprehensive chromosome screening and trophectoderm biopsy. Nevertheless, patients with ovarian insufficiency may not have competent blastocysts. In the present study, we aimed to establish the value of multiple annealing and looping-based amplification cycle (MALBAC)-based next-generation sequencing (NGS) for PGT in day-3 embryos.
View Article and Find Full Text PDFPrecise regulation of glucose metabolism-related genes is essential for early embryonic development. Although previous research has yielded detailed information on the biochemical processes, little is yet known of the dynamic gene expression profiles in glucose metabolism of preimplantation embryos at a single-cell resolution. In the present study, we performed integrated analysis of single-cell RNA sequencing (scRNA-seq) data of human preimplantation embryos that had been cultured in sequential medium.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients.
View Article and Find Full Text PDFUsing the paradigm of in vitro differentiation of hESCs/iPSCs into retinal pigment epithelial (RPE) cells, we have recently profiled mRNA and miRNA transcriptomes to define a set of RPE mRNA and miRNA signature genes implicated in directed RPE differentiation. In this study, in order to understand the role of DNA methylation in RPE differentiation, we profiled genome-scale DNA methylation patterns using the method of reduced representation bisulfite sequencing (RRBS). We found dynamic waves of de novo methylation and demethylation in four stages of RPE differentiation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2014