Publications by authors named "Jieliang Chen"

Article Synopsis
  • Current anti-HBV therapies have limitations, leading researchers to explore HBV core protein assembly modulators (CpAMs) as potential new treatments.
  • The study developed a high-throughput screening system to identify novel CpAMs from a marine chemicals library, discovering a promising compound derived from naamidine J with effective anti-HBV activity.
  • This compound not only inhibited HBV replication in cell models but also showed a synergistic effect with existing treatments and proved to be safe in mouse models, indicating its potential for future anti-HBV therapies.
View Article and Find Full Text PDF

Unlabelled: The persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is a key obstacle for HBV cure. This study aims to comprehensively assess the effect of interferon (IFN) and small-interfering RNA (siRNA) combination on the cccDNA minichromosome. Utilizing both cell and mouse cccDNA models, we compared the inhibitory effects of IFNα, siRNA, and their combination on cccDNA activity and assessed its epigenetic state.

View Article and Find Full Text PDF

The mechanisms underlying the natural control of hepatitis B virus (HBV) infection have long been an intriguing question. Given the wide physiological range of liver stiffness and the growing attention to the role of mechanical microenvironment in homeostasis and diseases, we investigated how physical matrix cues impact HBV replication. High matrix stiffness significantly inhibited HBV replication and activated YAP in primary hepatocyte culture system, a key molecule in mechanosignaling.

View Article and Find Full Text PDF

Unlabelled: Toll-like receptors (TLRs) play a crucial role in eliminating viral infection. Conversely, viruses have evolved various strategies to disrupt TLR signaling during chronic infection. In the case of hepatitis B virus (HBV), we previously reported that plasma hepatitis B surface antigen (HBsAg) is closely associated with impaired TLR responses in peripheral blood mononuclear cells from chronic hepatitis B (CHB) patients, but the reasons remain unclear.

View Article and Find Full Text PDF

The overuse of quinolone antibiotics has led to a series of health and environmental issues. Herein, we combine the distinct luminescence properties of Eu with the unique structure of covalent organic frameworks (COFs) to develop a precise and sensitive fluorescent probe for detecting Flumequine (Flu) in water. Eu is thoroughly anchored into the channels of COFs as recognition sites, while the synthesized probe material still maintains its intact framework structure.

View Article and Find Full Text PDF

The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) is organized as a minichromosome structure in the nucleus of infected hepatocytes and considered the major obstacle to the discovery of a cure for HBV. Until now, no strategies directly targeting cccDNA have been advanced to clinical stages as much is unknown about the accessibility and activity regulation of the cccDNA minichromosome. We have described the method for evaluation of the cccDNA minichromosome accessibility using micrococcal nuclease-quantitative polymerase chain reaction and high-throughput sequencing, which could be useful tools for cccDNA research and HBV cure studies.

View Article and Find Full Text PDF

Background And Aims: HBsAg serves as an important immune-modulatory factor in chronic hepatitis B. One aspect of such modulation may act through monocytes, which are the major Ag-presenting cells taking up HBsAg. There is evidence for the encapsulation of hepatocellular microRNAs (miRNAs) by HBsAg particles, while its pathobiological significance is unclear.

View Article and Find Full Text PDF

This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of extrachromosomal circular DNA (eccDNA) in hepatocellular carcinoma (HCC) by comparing genome-wide eccDNA profiles from HCC tissues and adjacent non-tumor tissues using Circle-seq and RNA sequencing.
  • - A total of 60,423 unique eccDNA types were identified, with the majority being smaller than 1 kb, and significant differences in eccDNA patterns were found between HCC and non-tumor samples.
  • - The research suggests that specific eccDNAs, particularly from chromosome 22, are associated with increased gene expression in tumors and may have implications for survival rates in HCC patients, indicating a complex relationship between eccDNA and gene regulation in cancer
View Article and Find Full Text PDF

Type I interferons (IFN-Is) have key roles in immune defense and treatments for various diseases, including chronic hepatitis B virus (HBV) infection. All IFN-Is signal through a shared IFN-I heterodimeric receptor complex comprising IFN-α receptor 1 (IFNAR1) and IFNAR2 subunits, but differences in antiviral and immunomodulatory responses among IFN-I subtypes remain largely unknown. Because the IFN-IFNAR interactions are species-specific, mice exhibit weak responses to human IFN-I.

View Article and Find Full Text PDF

Hepatitis B virus (HBV), which can cause chronic hepatitis B, has sophisticated machinery to establish persistent infection. Here, we report a novel mechanism whereby HBV changed miRNA packaging into extracellular vesicles (EVs) to facilitate replication. Disruption of the miRNA machinery in hepatocytes enhanced HBV replication, indicating an intrinsic miRNA-mediated antiviral state.

View Article and Find Full Text PDF

Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)-specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low.

View Article and Find Full Text PDF

Chronic infection of hepatitis B virus (HBV) remains a major health burden worldwide. While the immune response has been recognized to play crucial roles in HBV pathogenesis, the direct cytopathic effects of HBV infection and replication on host hepatocytes and the HBV-host interactions are only partially defined due to limited culture systems. Here, based on our recently developed 5 chemical-cultured primary human hepatocytes (5C-PHHs) model that supports long-term HBV infection, we performed multiplexed quantitative analysis of temporal changes of host proteome and transcriptome on PHHs infected by HBV for up to 4 weeks.

View Article and Find Full Text PDF

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research has shown that different tissues and cell types have unique miRNA profiles, but the specific profiles in liver cells and their roles in HBV replication are not well understood.
  • In this study, researchers identified distinct miRNA profiles across four types of liver cells isolated from non-HBV-infected patients, discovering that miR-192-3p significantly enhances HBV replication by targeting ZNF143 and inhibiting the Akt/mTOR pathway.
  • The findings suggest that miR-192-3p is not only elevated in chronic hepatitis B patients compared to healthy individuals but also correlates with higher levels of viral markers like HBV DNA and HBsAg, highlighting its potential role in liver disease and viral interactions.
View Article and Find Full Text PDF

Background And Aims: HBV covalently closed circular DNA (cccDNA) is a major obstacle for a cure of chronic hepatitis B. Accumulating evidence suggests that epigenetic modifications regulate the transcriptional activity of cccDNA minichromosomes. However, it remains unclear how the epigenetic state of cccDNA affects its stability.

View Article and Find Full Text PDF

Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for which there is still no effective curative treatment. Interferon (IFN) consists of a group of cytokines with antiviral activity and immunoregulatory and antitumor effects, that play crucial roles in both innate and adaptive immune responses. IFN-α and its pegylated form have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of finite treatment duration and sustained virologic response, however, the efficacy is limited and side effects are common.

View Article and Find Full Text PDF

Pandemic SARS-CoV-2 has caused unprecedented mortalities. Vaccine is in urgent need to stop the pandemic. Despite great progresses on SARS-CoV-2 vaccine development, the efficacy of the vaccines remains to be determined.

View Article and Find Full Text PDF

Background And Aims: Interferon (IFN)-α, composed of numerous subtypes, plays a crucial role in immune defense. As the most studied subtype, IFN-α2 has been used for treating chronic hepatitis B virus (HBV) infection, with advantages of finite treatment duration and sustained virologic response, but its efficacy remains relatively low. This study aimed to screen for IFN-α subtypes with the highest anti-HBV potency and to characterize mechanisms of IFN-α-mediated HBV restriction.

View Article and Find Full Text PDF

A zoonotic coronavirus, tentatively labeled as 2019-nCoV by the World Health Organization (WHO), has been identified as the causative agent of the viral pneumonia outbreak in Wuhan, China, at the end of 2019. Although 2019-nCoV can cause a severe respiratory illness like SARS and MERS, evidence from clinics suggested that 2019-nCoV is generally less pathogenic than SARS-CoV, and much less than MERS-CoV. The transmissibility of 2019-nCoV is still debated and needs to be further assessed.

View Article and Find Full Text PDF

A growing consensus indicates that host metabolism plays a vital role in viral infections. Hepatitis B virus (HBV) infection occurs in hepatocytes with active glucose metabolism and may be regulated by cellular metabolism. We addressed the question whether and how glucose regulates HBV replication in hepatocytes.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) X protein (HBx) has been reported to counteract the innate immune responses through interfering with the pattern recognition receptors signaling activated by retinoic acid-inducible gene-I (RIG-I)-mitochondrial antiviral signaling protein (MAVS). Here, we showed that, compared to the HBx derived from genotype (gt) A, C and D, HBx of gtB exhibited more potent inhibitory activity on the RIG-I-MAVS-mediated interferon-β promoter activation. Functional analysis of the genotype-associated differences in amino acid sequence and the reciprocal mutation experiments in transient-transfection and infection cell models revealed that HBx with asparagine (N) and glutamic acid (E) at 118-119 positions inhibited RIG-I signaling and interacted with MAVS more efficiently than that with lysine (K) and aspartic acid (D).

View Article and Find Full Text PDF

Exosomes are extracellular vesicles that function in intercellular communication. We have previously reported that exosomes play an important role in the transmission of antiviral molecules during interferon-α (IFN-α) treatment. In this study, the protein profiles of THP-1-derived macrophages with or without interferon-α treatment and the exosomes secreted from these cells were analyzed by label-free liquid chromatography-tandem mass spectrometry quantitation technologies.

View Article and Find Full Text PDF