Spinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology.
View Article and Find Full Text PDFBy effectively controlling the dipole-dipole interaction, we investigate the characteristics of the ground state of bright solitons in a spin-orbit coupled dipolar Bose-Einstein condensate. The dipolar atoms are trapped within a double-lattice which consists of a linear and a nonlinear lattice. We derive the motion equations of the different spin components, taking the controlling mechanisms of the dipole-dipole interaction into account.
View Article and Find Full Text PDFThe system of a transversely pumped Bose-Einstein condensate (BEC) coupled to a lossy ring cavity can favor a supersolid steady state. Here we find the existence of supersolid gap soliton in such a driven-dissipative system. By numerically solving the mean-field atom-cavity field coupling equations, gap solitons of a few different families have been identified.
View Article and Find Full Text PDFPhys Rev E
October 2021
The interaction between atomic Bose-Einstein condensate (BEC) and light field in an optical ring cavity gives rise to many interesting phenomena such as supersolid and movable self-trapped matter wave packets. Here we examined the collision of two self-trapped atomic matter wave packets in an optical ring cavity, and abundant colliding phenomena have been found in the system. Depending on the magnitude of colliding velocity, the collision dynamics exhibit very different features compared with the cavity-free case.
View Article and Find Full Text PDFCan J Infect Dis Med Microbiol
August 2020
Background: Metagenomic next-generation sequencing (mNGS) has made a revolution in the mode of pathogen identification. We decided to explore the diagnostic value of blood and bronchoalveolar lavage fluid (BALF) as mNGS samples in pneumonia.
Methods: We retrospectively reviewed 467 mNGS results and assessed the diagnostic performance of paired blood and BALF mNGS in 39 patients with pneumonia.
Background: Idiopathic pulmonary fibrosis (IPF) is a serious disorder with a high mortality rate worldwide. It is characterized by irreversible scarring of the lung parenchyma resulting from excessive collagen production by proliferating fibroblasts/myofibroblasts. Previous studies have revealed that mutations in surfactant protein-related genes and telomerase complex genes are crucial underlying genetic factors.
View Article and Find Full Text PDFElectronic synapses based on memristive devices can potentially open a niche area for neuromorphic computing by replicating the function of biological synapses with high fidelity. Recently, two-terminal memristors based on halide perovskites have demonstrated outstanding memristive properties and a variety of synaptic characteristics, combining with their additional advantages such as a solution-processed fabrication method and low crystalline temperature. However, the concerns over the chemical and phase stability of halide perovskites greatly hinder their practical applications.
View Article and Find Full Text PDFMemristive synapses from biomaterials are promising for building flexible and implantable artificial neuromorphic systems due to their remarkable mechanical and biological properties. However, these biological devices have relatively poor memristive switching characteristics, and thus fail to meet the requirement of neuromorphic networks for high learning accuracy. Here, memristive synapses based on carrageenan nanocomposites that possess desirable characteristics are demonstrated.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
February 2019
Objective: To investigate whether cell preservation solution can prolong the survival time of leukemia cells and increase the survival rate, so as to improve the detection rate of central nervous system leukemia.
Methods: Kasumi cells were added into cerebrospinal fluid (CSF) supernatant with or without cell preservation solution to compare cell viability and biological characteristics at different time point. Wright Giemsa staining was used to compare cell morphology; cell counting, CCK-8 method, and trypan blue staining were used to compare the cell number, and flow cytometry was used to compare the cell viability.
It was recently found that the electric local-field effect (LFE) can lead to a strong coupling of atomic Bose-Einstein condensates (BECs) to off-resonant optical fields. We demonstrate that the magnetic LFE gives rise to a previously unexplored mechanism for coupling a (pseudo-) spinor BEC or fermion gas to microwaves (MWs). We present a theory for the magnetic LFE and find that it gives rise to a short-range attractive interaction between two components of the (pseudo) spinor, and a long-range interaction between them.
View Article and Find Full Text PDF