Publications by authors named "Jielei Chu"

The instability is shown in the existing methods of representation learning based on Euclidean distance under a broad set of conditions. Furthermore, the scarcity and high cost of labels prompt us to explore more expressive representation learning methods which depends on as few labels as possible. To address above issues, the small-perturbation ideology is firstly introduced on the representation learning model based on the representation probability distribution.

View Article and Find Full Text PDF

Restricted Boltzmann machines (RBMs) and their variants are usually trained by contrastive divergence (CD) learning, but the training procedure is an unsupervised learning approach, without any guidances of the background knowledge. To enhance the expression ability of traditional RBMs, in this paper, we propose pairwise constraints (PCs) RBM with Gaussian visible units (pcGRBM) model, in which the learning procedure is guided by PCs and the process of encoding is conducted under these guidances. The PCs are encoded in hidden layer features of pcGRBM.

View Article and Find Full Text PDF