The interaction of PD-L1 and PD-1 transmits the inhibitory signal to reduce the proliferation of antigen-specific T-cells in lymph nodes. The expression of PD-L1 confers a potential escaping mechanism of tumors from the host immune system. Blocking the interaction of PD-1 and PD-L1 enables tumor-reactive T cells to overcome regulatory mechanisms and induce an effective antitumor response.
View Article and Find Full Text PDFInt Immunopharmacol
May 2023
As the principal ligand of programmed death 1 (PD-1), PD-L1 can induce the exhaustion of effector T cells and the escape of cancer cells through interacting with PD-1 in many solid malignancies. Therefore, targeting the PD-1/PD-L1 axis has become an attractive strategy in cancer immunotherapy. However, at present, no small-molecule agents targeting PD1/PD-L1 pathways have been successfully used in clinical applications.
View Article and Find Full Text PDFTargeted protein degradation (TPD) strategies have become a new trend in drug discovery due to the capability of triggering the degradation of protein of interest (POI) selectively and effectively in recent decades. Particularly, the hydrophobic tag tethering degrader (HyTTD) has drawn a lot of attention and may offer a promising strategy for new drug research and development in the future. Herein, we will give an overview of the development of HyTTD, the structure-activity relationship (SAR) between HyTTD and linkers, HyTs, and ligand motifs, as well as the various HyTTDs targeting different targets, thus offering a rational strategy for the design of HyTTDs in further TPD drug discovery.
View Article and Find Full Text PDFGiven the emerging pivotal roles of stimulator of interferon genes (STING) in host pathogen defense and immune-oncology, STING is regarded as a promising target for drug development. Cyclic dinucleotides (CDNs) are the first-generation STING agonists. However, their poor metabolic stability and membrane permeability limits their therapeutic application.
View Article and Find Full Text PDF