Publications by authors named "Jiejun Wu"

Objective: To explore new metrics for assessing radical prostatectomy difficulty through a two-stage deep learning method from preoperative magnetic resonance imaging.

Methods: The procedure and metrics were validated through 290 patients consisting of laparoscopic and robot-assisted radical prostatectomy procedures from two real cohorts. The nnUNet_v2 adaptive model was trained to perform accurate segmentation of the prostate and pelvis.

View Article and Find Full Text PDF

Background: Allergic contact dermatitis cannot be reliably differentiated from other forms of spongiotic/eczematous dermatitis by histology alone. Textbooks and recent studies have variably supported the specificity of dermal eosinophils, eosinophilic spongiosis, and Langerhans cell collections, among other features.

Objective: To assess which histopathologic features favor a diagnosis of allergic contact dermatitis.

View Article and Find Full Text PDF

Background: Lymphovascular invasion (LVI) is linked to poor prognosis in patients with muscle-invasive bladder cancer (MIBC). Accurately identifying the LVI status in MIBC patients is crucial for effective risk stratification and precision treatment. We aim to develop a deep learning model to identify the LVI status in whole-slide images (WSIs) of MIBC patients.

View Article and Find Full Text PDF

Epidermal growth factor receptor 2 () has been widely recognized as one of the targets for bladder cancer immunotherapy. The key to implementing personalized treatment for bladder cancer patients lies in achieving rapid and accurate diagnosis. To tackle this challenge, we have pioneered the application of deep learning techniques to predict expression status from H&E-stained pathological images of bladder cancer, bypassing the need for intricate IHC staining or high-throughput sequencing methods.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate estimation of glomerular filtration rate (GFR) is essential for diagnosing and treating obstructive nephropathy (ON), prompting the development of UroAngel, a deep learning system for predicting kidney function using CT images.* -
  • The study involved analyzing CTU images and diagnostic reports from 520 ON patients, utilizing a 3D U-Net model for segmentation and logistic regression for function prediction.* -
  • UroAngel demonstrated high accuracy in segmenting the renal cortex and predicting kidney function, outperforming traditional methods and expert radiologists, indicating its potential as a reliable, non-invasive assessment tool.*
View Article and Find Full Text PDF

Background: Accurate prediction of lymph node metastasis (LNM) status in patients with muscle-invasive bladder cancer (MIBC) before radical cystectomy can guide the use of neoadjuvant chemotherapy and the extent of pelvic lymph node dissection. We aimed to develop and validate a weakly-supervised deep learning model to predict LNM status from digitized histopathological slides in MIBC.

Methods: We trained a multiple instance learning model with an attention mechanism (namely SBLNP) from a cohort of 323 patients in the TCGA cohort.

View Article and Find Full Text PDF

Purpose: To investigate the role of cyanidin-3-O-glucoside (C3G) in renal ischemia/reperfusion (I/R) injury and the potential mechanisms.

Methods: Mouse models were established by clamping the left renal vessels, and in vitro cellular models were established by hypoxic reoxygenation.

Results: Renal dysfunction and tissue structural damage were significantly higher in the I/R group.

View Article and Find Full Text PDF

Although the tumor-stroma ratio (TSR) has prognostic value in many cancers, the traditional semi-quantitative visual assessment method has inter-observer variability, making it impossible for clinical practice. We aimed to develop a machine learning (ML) algorithm for accurately quantifying TSR in hematoxylin-and-eosin (H&E)-stained whole slide images (WSI) and further investigate its prognostic effect in patients with muscle-invasive bladder cancer (MIBC). We used an optimal cell classifier previously built based on QuPath open-source software and ML algorithm for quantitative calculation of TSR.

View Article and Find Full Text PDF

(1) Purpose: Although assessment of tumor-infiltrating lymphocytes (TILs) has been acknowledged to have important predictive prognostic value in muscle-invasive bladder cancer (MIBC), it is limited by inter- and intra-observer variability, hampering widespread clinical application. We aimed to evaluate the prognostic value of quantitative TILs score based on a machine learning (ML) algorithm to identify MIBC patients who might benefit from immunotherapy or the de-escalation of therapy. (2) Methods: We constructed an artificial neural network classifier for tumor cells, lymphocytes, stromal cells, and “ignore” cells from hematoxylin-and-eosin-stained slide images using the QuPath open source software.

View Article and Find Full Text PDF

(1) Background: Early diagnosis and treatment are essential to reduce the mortality rate of bladder cancer (BLCA). We aimed to develop deep learning (DL)-based weakly supervised models for the diagnosis of BLCA and prediction of overall survival (OS) in muscle-invasive bladder cancer (MIBC) patients using whole slide digitized histological images (WSIs). (2) Methods: Diagnostic and prognostic models were developed using 926 WSIs of 412 BLCA patients from The Cancer Genome Atlas cohort.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcγ receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase that plays a critical role in the activation of B cells, macrophages, and osteoclasts. Given the key role of these cell types in the pathology of autoimmune disorders, BTK inhibitors have the potential to improve treatment outcomes in multiple diseases. Herein, we report the discovery and characterization of a novel potent and selective covalent 4-oxo-4,5-dihydro-3-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide BTK inhibitor chemotype.

View Article and Find Full Text PDF

Inhibition of the serine protease enteropeptidase (EP) opens a new avenue to the discovery of chemotherapeutics for the treatment of metabolic diseases. Camostat has been used clinically for treating chronic pancreatitis in Japan; however, the mechanistic basis of the observed clinical efficacy has not been fully elucidated. We demonstrate that camostat is a potent reversible covalent inhibitor of EP, with an inhibition potency ( /K) of 1.

View Article and Find Full Text PDF

The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state.

View Article and Find Full Text PDF

Unlike closely related GPCRs, protease-activated receptors (PAR1, PAR2, PAR3, and PAR4) have a predicted signal peptide at their N-terminus, which is encoded by a separate exon, suggesting that the signal peptides of PARs may serve an important and unique function, specific for PARs. In this report, we show that the PAR2 signal peptide, when fused to the N-terminus of IgG-Fc, effectively induced IgG-Fc secretion into culture medium, thus behaving like a classical signal peptide. The presence of PAR2 signal peptide has a strong effect on PAR2 cell surface expression, as deletion of the signal peptide (PAR2ΔSP) led to dramatic reduction of the cell surface expression and decreased responses to trypsin or the synthetic peptide ligand (SLIGKV).

View Article and Find Full Text PDF

GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands.

View Article and Find Full Text PDF

Aging in humans is associated with increased hyperglycemia and insulin resistance (collectively termed IR) and dysregulation of the immune system. However, the causative factors underlying their association remain unknown. Here, using "healthy" aged mice and macaques, we found that IR was induced by activated innate 4-1BBL B1a cells.

View Article and Find Full Text PDF

We have developed a workflow to extract, separate, and semi-quantify bioactive oxysterols from mouse colon tissues and fecal matters using solid- and liquid-phase extractions, enzymatic and chemical modifications, and stable-isotope dilution LC/MS/MS. The method was applied to a dextran sodium sulphate (DSS)-induced mouse colitis model, which revealed that one particular dihydroxycholesterol (diOHC), 7α,25-diOHC, was significantly elevated in both colon tissue and fecal matters of mice with colitis compared to that in naïve mice. The extent of 7α,25-diOHC elevation was positively correlated with colitis severity.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method.

View Article and Find Full Text PDF

Synthesis of several 7-hydroxy oxysterols and their potential roles as signaling molecules in the innate and adaptive immune responses is discussed. Discovery of a new, fluorinated, synthetic analog of the 7α,25-dihydroxycholesterol-the endogenous ligand of GPR 183 (EBI2), a G-protein coupled receptor highly expressed upon Epstein-Barr virus infection is described. Fluoro oxysterol 12 showed good metabolic stability while maintaining excellent EBI2 agonist activity.

View Article and Find Full Text PDF

Leukotrienes (LTs) and related species are proinflammatory lipid mediators derived from arachidonic acid (AA) that have pathological roles in autoimmune and inflammatory conditions, cardiovascular diseases, and cancer. 5-Lipoxygenase activating protein (FLAP) plays a critical accessory role in the conversion of AA to LTA4, and its subsequent conversion to LTC4 by LTC4 synthase. Pharmacological inhibition of FLAP results in a loss of LT production by preventing the biosynthesis of both LTB4 and LTC4, making it an attractive target for the treatment of inflammatory diseases in which LTs likely play a role.

View Article and Find Full Text PDF

GPR139 is an orphan G-protein-coupled receptor expressed in the central nervous system. To identify its physiologic ligand, we measured GPR139 receptor activity from recombinant cells after treatment with amino acids, orphan ligands, serum, and tissue extracts. GPR139 activity was measured using guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding, calcium mobilization, and extracellular signal-regulated kinases phosphorylation assays.

View Article and Find Full Text PDF

It is widely accepted that small-molecule drugs, despite their selectivity at primary targets, exert pharmacological effects (and safety liabilities) through a multiplicity of pathways. As such, it has proved extremely difficult to experimentally assess polypharmacology in an agnostic fashion. Profiling of metabolites produced as part of physiological responses to pharmacological stimuli provides a unique opportunity to explore drug pharmacology.

View Article and Find Full Text PDF

The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17-producing CD4(+) Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8mtugmviio15f2paqbaoi9mh6pcf12n6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once