Low-dimensional metal halides exhibit strong structural and electronic anisotropies, making them candidates for accessing unusual electronic properties. Here, we demonstrate pressure-induced quasi-one-dimensional (quasi-1D) metallicity in δ-CsSnI. With the application of pressure up to 40 GPa, the initially insulating δ-CsSnI transforms to a metallic state.
View Article and Find Full Text PDFElectron-phonon coupling was believed to govern the carrier transport in halide perovskites and related phases. Here we demonstrate that electron-electron interaction enhanced by Cs-involved electron redistribution plays a direct and prominent role in the low-temperature electrical transport of compressed CsPbI and renders Fermi liquid (FL)-like behavior. By compressing δ-CsPbI to 80 GPa, an insulator-semimetal-metal transition occurs, concomitant with the completion of a slow structural transition from the one-dimensional Pnma (δ) phase to a three-dimensional Pmn2 (ε) phase.
View Article and Find Full Text PDFFunctional CsPbI perovskite phases are not stable at ambient conditions and spontaneously convert to a non-perovskite δ phase, limiting their applications as solar cell materials. We demonstrate the preservation of a black CsPbI perovskite structure to room temperature by subjecting the δ phase to pressures of 0.1 - 0.
View Article and Find Full Text PDFIn this work, compared with the corresponding pure CsPbCl nanocrystals (NCs) and Mn-doped CsPbCl NCs, Mn/Cu-codoped CsPbCl NCs exhibited improved photoluminescence (PL) and photoluminescence quantum yields (PL QYs) (57.6%), prolonged PL lifetimes (1.78 ms), and enhanced thermal endurance (523 K) as a result of efficient Mn doping (3.
View Article and Find Full Text PDFTwo-dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure-property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure-induced emission (PIE) at 2.
View Article and Find Full Text PDFGraphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications.
View Article and Find Full Text PDFWe report on the intriguing structural and electrical transport properties of compressed InN. Pronounced anomalies of the resistivity, Hall coefficient, electron concentration, and mobility are observed at ∼11.5 GPa, accompanied by a wurtzite-rocksalt structural transition confirmed using high-pressure XRD measurements and first-principles calculations.
View Article and Find Full Text PDFRecent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods.
View Article and Find Full Text PDFIn this work, we report the pressure-dependent electrical transport and structural properties of SnSe. In our experiments an electronic transition from a semiconducting to semimetallic state was observed at 12.6 GPa, followed by an orthorhombic to monoclinic structural transition.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2015
Herein, we report on the intriguing electrical transport properties of compressed AlAs. The relative permittivity and the resistances of both the grain and bulk boundaries vary abnormally at ∼10.9 GPa, accompanied by the cubic-hexagonal structural transition of AlAs.
View Article and Find Full Text PDF