A majority of flexible and wearable electronics require high operational voltage that is conventionally achieved by serial connection of battery unit cells using external wires. However, this inevitably decreases the energy density of the battery module and may cause additional safety hazards. Herein, a bipolar textile composite electrode (BTCE) that enables internal tandem-stacking configuration to yield high-voltage (6 to 12 V class) solid-state lithium metal batteries (SSLMBs) is reported.
View Article and Find Full Text PDFLightweight and high-performance conductive polymer composites (CPCs) have attracted much attention for electromagnetic interference (EMI) shielding. Herein, the porous structure was constructed in poly(oxymethylene)/multi-wall carbon nanotube (POM/MWCNT) nanocomposites via assisting by poly(l-lactide) (PLLA). First, the POM/PLLA/MWCNT (S-PMLNT) nanocomposites were obtained by melt mixing and compression molding.
View Article and Find Full Text PDF