Flexible wearable electronic devices based on hydrophobic, conductive hydrogels have attracted widespread attention in the field of underwater sensing. However, traditional homogeneous hydrogels tend to compromise their conductivity and sensing performance when achieving hydrophobicity, and the high complexity of marine environments further reduces their sensing performance and service life. Here, we develop a seawater-resistant conductive hydrogel with ultrahigh sensitivity and self-healing ability by the introduction of a skin-like heterogeneous structure, consisting of a hydrophobic outer layer that protects against seawater and a conductive internal layer that senses.
View Article and Find Full Text PDFA novel biomass cellulose-based colorimetric sensor (DAC-PDH) was prepared by a Schiff base reaction between the aldehyde groups of dialdehyde cellulose (DAC) and the amino groups of 2,6-pyridine dihydrazide (PDH). The as-prepared sensor (DAC-PDH) showed selective recognition of Cu and a visual colour change from white to green. The visual limit of detection for Cu was 10 mol/L.
View Article and Find Full Text PDF