Publications by authors named "Jiefeng Xi"

Purpose: In glioma surgery, it is critical to maximize tumor resection without compromising adjacent noncancerous brain tissue. Optical coherence tomography (OCT) is a noninvasive, label-free, real-time, high-resolution imaging modality that has been explored for glioma infiltration detection. Here, we report a novel artificial intelligence (AI)-assisted method for automated, real-time, detection of glioma infiltration at high spatial resolution.

View Article and Find Full Text PDF

Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image.

View Article and Find Full Text PDF

We investigated the optimal operational conditions for utilizing a broadband supercontinuum (SC) source in a portable 800 nm spectral-domain (SD) endoscopic OCT system to enable high resolution, high-sensitivity, and high-speed imaging in vivo. A SC source with a 3-dB bandwidth of ∼246  nm was employed to obtain an axial resolution of ∼2.7  μm (in air) and an optimal detection sensitivity of ∼-107  dB with an imaging speed up to 35 frames/s (at 70 k A-scans/s).

View Article and Find Full Text PDF
Article Synopsis
  • More complete resection of brain cancer can enhance survival and delay recurrence; however, distinguishing cancer from noncancerous tissues during surgery is difficult, especially in critical areas.
  • This study explored the use of label-free optical coherence tomography (OCT) to differentiate between cancer and noncancer tissues using fresh human brain tissues from patients with varying grades of brain cancer.
  • Results showed that OCT could accurately identify cancerous regions based on lower optical attenuation values, and it demonstrated real-time imaging capabilities, suggesting its potential for guiding safe surgical removal of brain tumors and improving patient outcomes.
View Article and Find Full Text PDF

This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance.

View Article and Find Full Text PDF

Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE).

View Article and Find Full Text PDF

We present a generic phase-domain processing method for detecting speckles in Fourier-domain optical coherence tomography (OCT) images. The physics behind the interferometry is revisited and analytically along with simulation results it indicates that the speckle formation comes with phase distortion to the complex OCT signal. The first and the second derivatives of phase along the imaging depth are then calculated for speckle identification.

View Article and Find Full Text PDF

We present a novel design for an endoscopic imaging catheter utilizing diffractive optics for ultrahigh-resolution optical coherence tomography (OCT) imaging at 800 nm. A diffractive microlens was developed to alleviate severe chromatic aberration when a broadband light source was employed at the 800 nm wavelength range. Combined with a home-built fiber rotary joint and a broadband Ti:sapphire laser, the imaging catheter achieved a lateral resolution of 6.

View Article and Find Full Text PDF

We report a cross-referencing method to quickly and accurately characterize the optical properties of nanoparticles including the extinction, scattering, absorption and backscattering cross sections by using an OCT system alone. Among other applications, such a method is particularly useful for developing nanoparticle-based OCT imaging contrast agents. The method involves comparing two depth-dependent OCT intensity signals collected from two samples (with one having and the other not having the nanoparticles), to extract the extinction and backscattering coefficient, from which the absorption coefficient can be further deduced (with the help of the established scattering theories for predicting the ratio of the backscattering to total scattering cross section).

View Article and Find Full Text PDF

Prostate cancer is highly heterogeneous in nature; while the majority of cases are clinically insignificant, some cases are lethal. Currently, there are no reliable screening methods for aggressive prostate cancer. Since most established serum and urine biomarkers are glycoproteins secreted or leaked from the diseased tissue, the current study seeks to identify glycoprotein markers specific to aggressive prostate cancer using tissue specimens.

View Article and Find Full Text PDF

We present an all-fiber-optically based endoscope platform for simultaneous optical coherence tomography (OCT) and fluorescence imaging. This design entails the use of double-clad fiber (DCF) in the endoscope for delivery of OCT source and fluorescence excitation light while collecting the backscattered OCT signal through the single-mode core and fluorescence emission through the large inner cladding of the DCF. Circumferential beam scanning was performed by rotating a 45° reflector using a miniature DC motor at the distal end of the endoscope.

View Article and Find Full Text PDF

We report the development of an all-fiber-optic scanning endomicroscope capable of high-resolution second harmonic generation (SHG) imaging of biological tissues and demonstrate its utility for monitoring the remodeling of cervical collagen during gestation in mice. The endomicroscope has an overall 2.0 mm diameter and consists of a single customized double-clad fiber, a compact rapid two-dimensional beam scanner, and a miniature compound objective lens for excitation beam delivery, scanning, focusing, and efficient SHG signal collection.

View Article and Find Full Text PDF

We report an all-fiber-optic scanning, multimodal endomicroscope capable of simultaneous optical coherence tomography (OCT) and two-photon fluorescence (TPF) imaging. Both imaging modalities share the same miniature fiber-optic scanning endomicroscope, which consists of a double-clad fiber with a core operating in single mode at both the OCT (1310 nm) and two-photon excitation (1550 nm) wavelengths, a piezoelectric two-dimensional fiber-optic beam scanner, and a miniature aspherical compound lens suitable for simultaneous acquisition of en face OCT and TPF images. A fiber-optic wavelength division multiplexer was employed in the integrated platform to combine the low coherence OCT light source and the femtosecond two-photon excitation laser into the same optical path.

View Article and Find Full Text PDF

We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy.

View Article and Find Full Text PDF

A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA).

View Article and Find Full Text PDF

A forward-viewing resonant fiber-optic endoscope of a scanning speed appropriate for a high-speed Fourier-domain optical coherence tomography (FD-OCT) system was developed to enable real-time, three-dimensional endoscopic OCT imaging. A new method was explored to conveniently tune the scanning frequency of a resonant fiber-optic scanner, by properly selecting the fiber-optic cantilever length, partially changing the mechanical property of the cantilever, and adding a weight to the cantilever tip. Systematic analyses indicated the resonant scanning frequency can be tuned over two orders of magnitude spanning from approximately 10Hz to approximately kHz.

View Article and Find Full Text PDF

Fine optical coherence tomography (OCT) imaging needles that can be integrated with a standard biopsy needle have been developed with a new optics design to improve the optical quality and mechanical robustness, where a fiber-optic lens (that is spliced to a single-mode fiber) and a microreflector are encased within a microglass tube. The design also minimizes the cylindrical lens effect induced by the glass tube and eases the needle assembly process. Real-time cross-sectional OCT imaging of various tissue samples were performed using the miniature-imaging needle along with a 1300-nm swept-source OCT system.

View Article and Find Full Text PDF

We developed a universal, real-time uniform K-space sampling (Rt-UKSS) method for high-speed swept-source optical coherence tomography (SS-OCT). An external clock uniform in K-space was generated. The clock was synchronized with the zero-crossing time of an interferometric calibration signal and used as triggers for a high-speed data acquisition system in a point-by-point fashion, hence enabling uniform data sampling in K-space.

View Article and Find Full Text PDF

We report new optics designs for an optical coherence tomography (OCT) balloon imaging catheter to achieve diffraction-limited high resolution at a large working distance and enable the correction of severe astigmatism in the catheter. The designs employed a 1 mm diameter gradient-index lens of a properly chosen pitch number and a glass rod spacer to fully utilize the available NA of the miniature optics. Astigmatism caused by the balloon tubing was analyzed, and a method based on a cylindrical reflector was proposed and demonstrated to compensate the astigmatism.

View Article and Find Full Text PDF

An extremely compact all-fiber-optic scanning endomicroscopy system was developed for two-photon fluorescence (TPF) and second harmonic generation (SHG) imaging of biological samples. A conventional double-clad fiber (DCF) was employed in the endomicroscope for single-mode femtosecond pulse delivery, multimode nonlinear optical signals collection and fast two-dimensional scanning. A single photonic bandgap fiber (PBF) with negative group velocity dispersion at two-photon excitation wavelength (i.

View Article and Find Full Text PDF

A flexible scanning fiber-optic endomicroscope using a miniature compound lens and a multimode-fiber (MMF) collector was developed for two-photon fluorescence (TPF) and second-harmonic generation (SHG) imaging. The compound lens consisted of a pair of aspherical lenses and exhibited reduced chromatic aberration compared with gradient-index lenses, thus increasing the TPF/SHG collection efficiency. The introduction of a short MMF collector at the distal end of the double-clad fiber of the endomicroscope further mitigated the adverse influence of chromatic aberration of the lens and enhanced the TPF/SHG collection efficiency.

View Article and Find Full Text PDF

A flexible fiber-optic endomicroscopy system was developed for nonlinear optical imaging of biological samples. Double-clad fiber and photonic bandgap fiber were employed in the endomicroscope for femtosecond pulse delivery, dispersion compensation, nonlinear optical signals collection and fast beam scanning. Three-dimensional imaging of biological tissues based on second harmonic generation and two-photon excited fluorescence was performed with the endomicroscope.

View Article and Find Full Text PDF

Gold nanocages with a relatively small size (e.g., approximately 45 nm in edge length) have been developed, and the structure of these nanocages was tailored to achieve strong absorption in the near-infrared (NIR) region for photothermal cancer treatment.

View Article and Find Full Text PDF