Publications by authors named "Jiebo Li"

Ischemic stroke (IS) is a leading cause of death and disability worldwide. Screening for marker genes in IS is crucial for its early diagnosis and improvement in clinical outcomes. In the study, the gene expression profiles in the GSE22255 and GSE37587 datasets were extracted from the public database Gene Expression Omnibus.

View Article and Find Full Text PDF
Article Synopsis
  • A new flexible electrode system is developed to address challenges in real-time disease management by integrating both diagnosis and treatment for localized interventions.
  • The system features a magnesium valve to prevent drug leakage and a drug-laden sponge that activates drug release when stimulated electrically, allowing for precise drug delivery.
  • Animal tests show that this system can effectively monitor physiological changes and administer drugs on demand, making it a promising solution for managing acute diseases in clinical settings.
View Article and Find Full Text PDF

Patterns fabricated with Au nanoparticles (Au NPs) exhibit significant potential in fields such as micro-optics and bioelectronics. However, the current manufacturing methods still suffer from complex processes and low efficiency. In this work, we propose a high-speed manufacturing method for Au micro-/nanostructures based on spatiotemporal focusing and maskless lithography, achieving a throughput of 0.

View Article and Find Full Text PDF

The photoinduced non-thermalized hot electrons at an interface play a pivotal role in determining plasmonic driven chemical events. However, understanding non-thermalized electron dynamics, which precedes electron thermalization (~125 fs), remains a grand challenge. Herein, we simultaneously captured the dynamics of both molecules and non-thermalized electrons in the MXene/molecule complexes by femtosecond time-resolved spectroscopy.

View Article and Find Full Text PDF

Background: The rapid progress in imaging techniques has led to an upsurge in the incidence of optic nerve arteriovenous malformations (AVMs) diagnoses. Nevertheless, a comprehensive integration addressing their diagnostic and therapeutic attributes remains elusive.

Case Description And The Literature Review: In this report, we present a case of optic nerve AVM in a patient who initially presented with progressive visual deterioration in the right eye.

View Article and Find Full Text PDF

Auto-focusing technology in ultrafast laser processing, especially for non-planar structures, holds paramount importance. The existing methodologies predominantly rely on optical mechanisms, thereby being limited by the original system and material reflectivity. This work proposes an approach that utilizes laser-induced sound as a feedback signal for system control, thereby circumventing the need for optical system adjustments and facilitating almost real-time tracking.

View Article and Find Full Text PDF

Background: Abnormalities in regulated cell death (RCD) are involved in multiple diseases. However, the role of RCD in intracranial aneurysms (IA) remains unknown. The aim of this study was to explore different RCD processes in the pathogenesis of IA.

View Article and Find Full Text PDF

Objective: The occurrence of dural arteriovenous fistulas (DAVFs) at the craniocervical junction (CCJ) is an uncommon vascular malformation. The diagnosis and treatment of CCJ DAVFs present a formidable challenge. This study aims to investigate the effect of endovascular embolization and microsurgery on improving patient prognosis.

View Article and Find Full Text PDF

Background: Cardiac complications are related to poor prognosis after spontaneous intracerebral hemorrhage (ICH). This study aims to predict the cardiac complications arising from small intracranial hematoma at ultraearly stage.

Methods: The data of this work were derived from the Risk Stratification and Minimally Invasive Surgery in Acute ICH Patients study (ClinicalTrials.

View Article and Find Full Text PDF

Plasmonic MXenes are of particular interest, because of their unique electron and phonon structures and multiple surface plasmon effects, which are different from traditional plasmonic materials. However, to date, how electronic energy damp to lattice vibrations (phonons) in MXenes has not been unraveled. Here, we employed ultrafast broadband impulsive vibrational spectroscopy to identify the energy damping channels in MXenes (TiCT and MoCT).

View Article and Find Full Text PDF

The RIIβ subunit of  cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIβ-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIβ reexpression in hypothalamic GABAergic neurons rescues the leanness.

View Article and Find Full Text PDF

Evaluating the stress field based on photoelasticity is of vital significance in engineering fields. To achieve the goal of efficiently demodulating stress distribution and to overcome the limitations of conventional methods, it is essential to develop a deep learning method to simplify and accelerate the process of image acquisition and processing. A framework is proposed to enhance prediction accuracy.

View Article and Find Full Text PDF

Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM.

View Article and Find Full Text PDF

To achieve the goal of efficiently analyzing transient absorption spectra without arbitrary assumption and to overcome the limitations of conventional methods in fitting ability and highly noised backgrounds, it is essential to develop new tools to achieve more accurate and robust prediction based on the intrinsic properties of a spectrum even under strong noise. In this work, Lasso regression and neural network were combined to achieve an effective fitting. Compared to the conventional global fitting method, our network could automatically determine the exponential form on each wave unit, in which the accuracy was as high as 97%.

View Article and Find Full Text PDF

Recently, 2D materials are in great demand for various applications such as optical devices, supercapacitors, sensors, and biomedicine. MXenes as a kind of novel 2D material have attracted considerable research interest due to their outstanding mechanical, thermal, electrical, and optical properties. Especially, the excellent nonlinear optical response enables them to be potential candidates for the applications in ultrafast photonics.

View Article and Find Full Text PDF

As a novel two-dimensional material, the most popular MXene (TiCT) has presented promising therapeutic effects in cancer and bacterial infections under near infrared light illumination. However, there is still a lack of molecular level insight on the destruction of the cell membrane by MXene. In this work, a series of molecular dynamics simulations were conducted to capture the nanosheet destruction processes.

View Article and Find Full Text PDF

The thermal management of MXene (TiCT) plays a crucial role in its performance during various emerging applications. However, it is unclear how the inevitable oxidation structure of TiCT influences the thermal dissipation, which might hinder its long-term performance and even create thermal damage. Here we show the thermal migration of a TiCT flake with surface oxidation in film and water by combining ultrafast pump-probe technique with molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Two-dimensional (2D) material-controllable degradation under light radiation is crucial for their photonics and medical-related applications, which are yet to be investigated. In this paper, we first report the laser illumination method to regulate the degradation rate of TiCT nanosheets in aqueous solution. Comprehensive characterization of intermediates and final products confirmed that plasmonic laser promoting the oxidation was strikingly different from heating the aqueous solution homogeneously.

View Article and Find Full Text PDF

Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces. Energy is rapidly transferred from one carbon monoxide (CO) molecule to another CO molecule or an organic molecule on adjacent surface sites of 2 nm Pt particles within a few picoseconds. On the contrary, energy flow from a surface organic molecule to an adjacent CO molecule is significantly slower and, in fact, within experimental sensitivity and uncertainty the transfer is not observed.

View Article and Find Full Text PDF

Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here we report two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces investigated with ultrafast vibrational spectroscopy. On a 5 nm platinum particle, within a few picoseconds the vibrational energy of a carbon monoxide adsorbate rapidly dissipates into the particle through electron/hole pair excitations, generating heat that quickly migrates on surface.

View Article and Find Full Text PDF

In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or clustering can be obtained from the neutron scattering data, MD calculations clearly demonstrate that substantial amounts of ion pairs and small ion clusters (subnanometers to a few nanometers) do exist in the solutions of concentrations 0.

View Article and Find Full Text PDF

The methodology and principle using vibrational energy transfer to measure molecular distances in liquids are introduced. The application of the method to the studies of ion pairing and clustering in strong electrolyte aqueous solutions is demonstrated with MSCN aqueous solutions where M = Li, Na, K, Cs, and NH4. Experiments suggest that ions in the concentrated aqueous solutions can form substantial quantities of ion clusters in which both cations and anions are involved.

View Article and Find Full Text PDF

Energy-gap-dependent vibrational-energy transfers among the nitrile stretches of KSCN/KS(13)CN/KS(13)C(15)N in D2O, DMF, and formamide liquid solutions at room temperature were measured by the vibrational-energy-exchange method. The energy transfers are slower with a larger energy donor/acceptor gap, independent of the calculated instantaneous normal mode ("phonons" in liquids) densities or the terahertz absorption spectra. The energy-gap dependences of the nonresonant energy transfers cannot be described by phonon compensation mechanisms with the assumption that phonons are the instantaneous normal modes of the liquids.

View Article and Find Full Text PDF

In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method.

View Article and Find Full Text PDF

The coordination number of Li(+) in acetonitrile solutions was determined by directly measuring the rotational times of solvent molecules bound and unbound to it. The CN stretch of the Li(+) bound and unbound acetonitrile molecules in the same solution has distinct vibrational frequencies (2276 cm(-1) vs 2254 cm(-1)). The frequency difference allows the rotation of each type of acetonitrile molecule to be determined by monitoring the anisotropy decay of each CN stretch vibrational excitation signal.

View Article and Find Full Text PDF