MSN8C, an analog of mansonone E, has been identified as a novel catalytic inhibitor of human DNA topoisomerase II that induces tumor regression and differs from VP-16(etoposide). Treatment with MSN8C showed significant antiproliferative activity against eleven human tumor cell lines in vitro. It was particularly effective against the HL-60/MX2 cell line, which is resistant to Topo II poisons.
View Article and Find Full Text PDFCurcumin (CUR) displays the capability of suppressing the proliferation and metastasis of various cancer cells. However, the effects and underline mechanisms of CUR to treat triple-negative breast cancer (TNBC) have not been systematically elucidated with an appropriate method. In the present research, a combination method of network pharmacology, molecular docking, and bio-experiment was used to investigate the pharmacological actions and underline mechanisms of CUR against TNBC.
View Article and Find Full Text PDFNovel mansonone F derivative MSN54 (9-bromo-2,3-diethylbenzo[de]chromene-7,8-dione) exhibited significant cytotoxicity against twelve human tumor cell lines in vitro, with particularly strong potency against HL-60/MX2 cell line resistant to Topo II poisons. MSN54 was found to have IC of 0.69 and 1.
View Article and Find Full Text PDFTo optimize clinical efficacy and reduce the drug-exposure-related toxicity of linezolid, whose concentrations show wide inter-variabilities, a simple and reliable quantitative assay for therapeutic drug monitoring is necessary. A UHPLC-MS/MS assay has been established for determination of linezolid in human plasma and fully validated according to the US FDA guidelines. After a simple, isotope-dilluted precipitation with methanol, the analytes were separated by a straightforward isocratic mode and the MS/MS was conducted under the ESI mode fitted with SRM.
View Article and Find Full Text PDFDevelopment of multidrug resistance against chemotherapeutic drugs is one of the major obstacles to successful cancer therapy in the clinic. Thus far, amphiphilic polymeric micelles and chemosensitizers have been used to overcome multidrug resistance in cancer. The goals of this study were to prepare poly(ethylene glycol)-bock-poly(lactide) (PEG(2k)-PLA(5k)) micelles for co-delivery of the chemotherapeutic drug doxorubicin (DOX) with a chemosensitizer curcumin (CUR), investigate the potential of the dual drug-loaded micelles ((DOX+CUR)-Micelles) to reverse multidrug resistance, and explore the underlying mechanisms.
View Article and Find Full Text PDFThe combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated.
View Article and Find Full Text PDFIn the present study, a series of novel azaoxoisoaporphine derivatives were reported and their inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Aβ aggregation were evaluated. The new compounds remained high inhibitory potency on Aβ aggregation, with inhibitory activity from 29.42% to 89.
View Article and Find Full Text PDFA series of mansonone F (MF) derivatives were designed and synthesized. These compounds were found to be strong inhibitors for topoisomerases, with much more significant inhibition for topoisomerase II rather than topoisomerase I. The best inhibitor showed 20 times stronger anti-topoisomerase II activity than a positive control Etoposide.
View Article and Find Full Text PDF