Publications by authors named "JieDong Zhang"

The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding.

View Article and Find Full Text PDF

Recent behavioral and neural imaging studies revealed a rhythmic sampling in the theta-band (3-8 Hz) of attention. Such observation indicates that visual attention sequentially visits attended locations rapidly and periodically to cover multiple spatial locations, which is believed driven by a general sampling mechanism with a sampling rate invariant to the number of targets. However, a general sampling mechanism with a fixed rate would lead to the consequence that it would take longer time for attention to revisit the same item when attention needs to cover more items, which could impair perceptual continuity.

View Article and Find Full Text PDF

Thermoelectric cells (TEC) directly convert heat into electricity via the Seebeck effect. Known as one TEC, thermogalvanic hydrogels are promising for harvesting low-grade thermal energy for sustainable energy production. In recent years, research on thermogalvanic hydrogels has increased dramatically due to their capacity to continuously convert heat into electricity with or without consuming the material.

View Article and Find Full Text PDF

The human brain can efficiently process action-related visual information, which supports our ability to quickly understand and learn others' actions. The visual information of goal-directed action is extensively represented in the parietal and frontal cortex, but how actions and goal-objects are represented within this neural network is not fully understood. Specifically, which part of this dorsal network represents the identity of goal-objects? Is such goal-object information encoded at an abstract level or highly interactive with action representations? Here, we used functional magnetic resonance imaging with a large number of participants (n = 94) to investigate the neural representation of goal-objects and actions when participants viewed goal-directed action videos.

View Article and Find Full Text PDF

Regions sensitive to specific object categories as well as organized spatial patterns sensitive to different features have been found across the whole ventral temporal cortex (VTC). However, it is unclear that within each object category region, how specific feature representations are organized to support object identification. Would object features, such as object parts, be represented in fine-scale spatial tuning within object category-specific regions? Here, we used high-field 7T fMRI to examine the spatial tuning to different face parts within each face-selective region.

View Article and Find Full Text PDF

Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise.

View Article and Find Full Text PDF

Most of human daily social interactions rely on the ability to successfully recognize faces. Yet ∼2% of the human population suffers from face blindness without any acquired brain damage [this is also known as developmental prosopagnosia (DP) or congenital prosopagnosia]). Despite the presence of severe behavioral face recognition deficits, surprisingly, a majority of DP individuals exhibit normal face selectivity in the right fusiform face area (FFA), a key brain region involved in face configural processing.

View Article and Find Full Text PDF

XRCC2 is an essential part of the homologous recombination repair pathway. However, relatively little is known about the effect of XRCC2 gene C41657T and G4234C polymorphisms on the individual susceptibility to colorectal cancer (CRC). The purpose of this study was to investigate the association between XRCC2 gene C41657T and G4234C polymorphisms and CRC and to explore the relationship among the polymorphisms and clinicopathologic parameters and protein expression levels of XRCC2.

View Article and Find Full Text PDF

Numerous studies with functional magnetic resonance imaging have shown that the fusiform face area (FFA) in the human brain plays a key role in face perception. Recent studies have found that both the featural information of faces (e.g.

View Article and Find Full Text PDF

Interest has increased recently in correlations across brain regions in the resting-state fMRI blood oxygen level-dependent (BOLD) response, but little is known about the functional significance of these correlations. Here we directly test the behavioral relevance of the resting-state correlation between two face-selective regions in human brain, the occipital face area (OFA) and the fusiform face area (FFA). We found that the magnitude of the resting-state correlation, henceforth called functional connectivity (FC), between OFA and FFA correlates with an individual's performance on a number of face-processing tasks, not non-face tasks.

View Article and Find Full Text PDF