The deep learning technique has been shown to be effectively addressed several image analysis tasks in the computer-aided diagnosis scheme for mammography. The training of an efficacious deep learning model requires large data with diverse styles and qualities. The diversity of data often comes from the use of various scanners of vendors.
View Article and Find Full Text PDFBackground: Non-contrast chest CT is widely used for lung cancer screening, and its images carry potential information of the thoracic aorta. The morphological assessment of the thoracic aorta may have potential value in the presymptomatic detection of thoracic aortic-related diseases and the risk prediction of future adverse events. However, due to low vasculature contrast in such images, visual assessment of aortic morphology is challenging and highly depends on physicians' experience.
View Article and Find Full Text PDFLung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers. Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR images. However, it requires large-scale and diverse medical data with high-quality annotations to train such robust and accurate CADs.
View Article and Find Full Text PDFBackground: A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parameters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limbs.
Methods: Standing X-rays of 1000 patients' lower limbs were examined for the DCNN and assigned to training, validation, and test sets. A coarse-to-fine network was employed to locate 20 key landmarks on both limbs that first recognised the regions of hip, knee, and ankle, and subsequently outputted the key points in each sub-region from a full-length X-ray.
Lung cancer accounts for the greatest number of cancer-related mortality, while the accurate evaluation of pulmonary nodules in computed tomography (CT) images can significantly increase the 5-year relative survival rate. Despite deep learning methods that have recently been introduced to the identification of malignant nodules, a substantial challenge remains due to the limited datasets. In this study, we propose a cascaded-recalibrated multiple instance learning (MIL) model based on multiattribute features transfer for pathologic-level lung cancer prediction in CT images.
View Article and Find Full Text PDFBackground: Pneumothorax (PTX) may cause a life-threatening medical emergency with cardio-respiratory collapse that requires immediate intervention and rapid treatment. The screening and diagnosis of pneumothorax usually rely on chest radiographs. However, the pneumothoraces in chest X-rays may be very subtle with highly variable in shape and overlapped with the ribs or clavicles, which are often difficult to identify.
View Article and Find Full Text PDFWe consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for diagnostic decision-making purposes because of a general lack of algorithm decision reasoning and interpretability.
View Article and Find Full Text PDFThe automated whole breast ultrasound (AWBUS) is a new breast imaging technique that can depict the whole breast anatomy. To facilitate the reading of AWBUS images and support the breast density estimation, an automatic breast anatomy segmentation method for AWBUS images is proposed in this study. The problem at hand is quite challenging as it needs to address issues of low image quality, ill-defined boundary, large anatomical variation, etc.
View Article and Find Full Text PDFIn [1], Baiying Lei was indicated as the corresponding author. Tianfu Wang and Baiying Lei should have been indicated as the corresponding authors.
View Article and Find Full Text PDFWe propose a novel dual-domain convolutional neural network framework to improve structural information of routine 3 T images. We introduce a parameter-efficient butterfly network that involves two complementary domains: a spatial domain and a frequency domain. The butterfly network allows the interaction of these two domains in learning the complex mapping from 3 T to 7 T images.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2018
Due to the high cost and low accessibility of 7T magnetic resonance imaging (MRI) scanners, we propose a novel dual-domain cascaded regression framework to synthesize 7T images from the routine 3T images. Our framework is composed of two parallel and interactive multi-stage regression streams, where one stream regresses on spatial domain and the other regresses on frequency domain. These two streams complement each other and enable the learning of complex mappings between 3T and 7T images.
View Article and Find Full Text PDFWe present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2018
Head circumference (HC) is one of the most important biometrics in assessing fetal growth during prenatal ultrasound examinations. However, the manual measurement of this biometric by doctors often requires substantial experience. We developed a learning-based framework that used prior knowledge and employed a fast ellipse fitting method (ElliFit) to measure HC automatically.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2016
Cystocele is a common disease in woman. Accurate assessment of cystocele severity is very important for treatment options. The transperineal ultrasound (US) has recently emerged as an alternative tool for cystocele grading.
View Article and Find Full Text PDFUltrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy.
View Article and Find Full Text PDFThe quality of ultrasound (US) images for the obstetric examination is crucial for accurate biometric measurement. However, manual quality control is a labor intensive process and often impractical in a clinical setting. To improve the efficiency of examination and alleviate the measurement error caused by improper US scanning operation and slice selection, a computerized fetal US image quality assessment (FUIQA) scheme is proposed to assist the implementation of US image quality control in the clinical obstetric examination.
View Article and Find Full Text PDFThe gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc.
View Article and Find Full Text PDFIEEE Trans Med Imaging
January 2017
Accurate segmentation of cervical cells in Pap smear images is an important step in automatic pre-cancer identification in the uterine cervix. One of the major segmentation challenges is overlapping of cytoplasm, which has not been well-addressed in previous studies. To tackle the overlapping issue, this paper proposes a learning-based method with robust shape priors to segment individual cell in Pap smear images to support automatic monitoring of changes in cells, which is a vital prerequisite of early detection of cervical cancer.
View Article and Find Full Text PDFThough numerous segmentation algorithms have been proposed to segment brain tissue from magnetic resonance (MR) images, few of them consider combining the tissue segmentation and bias field correction into a unified framework while simultaneously removing the noise. In this paper, we present a new unified MR image segmentation algorithm whereby tissue segmentation, bias correction and noise reduction are integrated within the same energy model. Our method is presented by a total variation term introduced to the coherent local intensity clustering criterion function.
View Article and Find Full Text PDFThis paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms.
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2016
Registration and fusion of magnetic resonance (MR) and 3D transrectal ultrasound (TRUS) images of the prostate gland can provide high-quality guidance for prostate interventions. However, accurate MR-TRUS registration remains a challenging task, due to the great intensity variation between two modalities, the lack of intrinsic fiducials within the prostate, the large gland deformation caused by the TRUS probe insertion, and distinctive biomechanical properties in patients and prostate zones. To address these challenges, a personalized model-to-surface registration approach is proposed in this study.
View Article and Find Full Text PDFObjective: Patients with neuropsychiatric systemic lupus erythematosus (NPSLE) may exhibit corpus callosal atrophy and tissue alterations. Measuring the callosal volume and tissue integrity using diffusion tensor imaging (DTI) could help to differentiate patients with NPSLE from patients without NPSLE. Hence, this study aimed to use an automatic cell-competition algorithm to segment the corpus callosum and to investigate the effects of central nervous system (CNS) involvement on the callosal volume and tissue integrity in patients with SLE.
View Article and Find Full Text PDFAs a potential biomarker for women's cardiovascular and chronic kidney diseases, breast arterial calcification (BAC) in mammography has become an emerging research topic in recent years. To provide more objective measurement for vascular structures with calcium depositions in mammography, a new computerized method is introduced in this paper to delineate the calcified vessels. Specifically, we leverage two underlying cues, namely calcification and vesselness, into a multiple seeded tracking with uncertainty scheme.
View Article and Find Full Text PDF