In the adult mouse hippocampus, NMDA receptors (NMDARs) of CA1 neurons play an important role in the synaptic plasticity. The location of NMDARs can determine their roles in the induction of long-term potentiation (LTP). However, the extrasynaptic NMDARs (ES-NMDARs) dependent LTP haven't been reported.
View Article and Find Full Text PDFA facile synthetic approach for total synthesis of tanshinone I has been accomplished. The key precursor is a novel compound, epoxy phenanthraquinone. And this synthesis of tanshinone I is achieved in only three simple stages, which include Diels-Alder reaction, Δ(2)-Weitz-Scheffer-type epoxidation, and Feist-Bénary reaction from commercially available styrene.
View Article and Find Full Text PDFThe number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDARs) are a key player in synaptic and several neurological diseases, such as stroke. Phosphorylation of NMDAR subunits at their cytoplasmic carboxyl termini has been considered to be an important mechanism to regulate the receptor function. Cyclin-dependent kinase 5 (Cdk5) has been demonstrated to be responsible for regulating phosphorylation and function of NMDARs.
View Article and Find Full Text PDFNeurons in the insular cortex are activated by acute and chronic pain, and inhibition of neuronal activity in the insular cortex has analgesic effects. We found that in a mouse model in which peripheral nerve injury leads to the development of neuropathic pain, the insular cortex showed changes in synaptic plasticity, which were associated with a long-term increase in the amount of synaptic N-methyl-d-aspartate receptors (NMDARs), but not that of extrasynaptic NMDARs. Activation of cyclic adenosine monophosphate (cAMP)-dependent signaling enhanced the amount of synaptic NMDARs in acutely isolated insular cortical slices and increased the surface localization of NMDARs in cultured cortical neurons.
View Article and Find Full Text PDFIt is well known that NMDA receptors (NMDARs) can both induce neurotoxicity and promote neuronal survival under different circumstances. Recent studies show that such paradoxical responses are related to the receptor location: the former to the extrasynaptic and the latter to the synaptic. The phosphoinositide 3-kinase (PI3K)/Akt kinase cascade is a key pathway responsible for the synaptic NMDAR-dependent neuroprotection.
View Article and Find Full Text PDFN-Methyl-D-aspartate receptors (NMDARs), one of three main classes of ionotropic glutamate receptors, play major roles in synaptic plasticity, synaptogenesis, and excitotoxicity. Unlike non-NMDA receptors, NMDARs are thought to comprise obligatory heterotetrameric complexes mainly composed of GluN1 and GluN2 subunits. When expressed alone in heterogenous cells, such as HEK293 cells, most of the NMDAR subunits can neither leave the endoplasmic reticulum (ER) nor be expressed in the cell membrane because of the ER retention signals.
View Article and Find Full Text PDF