In this study, a liquid cathode glow discharge-atomic emission spectrometry (LCGD-AES) was constructed for simultaneously determination of Cu and Pb in digested ores samples, in which the glow discharge was produced between the needle-like Pt anode and electrolyte overflowing from quartz capillary. The stability of LCGD and the effects of discharge voltage, capillary diameter and flow rate on emission intensity were systematically investigated. The limits of detections (LODs) of Cu and Pb were compared with those measured by closed-type electrolyte cathode discharge-atomic emission spectrometry (ELCAD-AES).
View Article and Find Full Text PDF