Publications by authors named "Jidong Gu"

Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands.

View Article and Find Full Text PDF

The production of increasing amounts of high salinity wastewaters in our industrialized society has prioritized their treatment to prevent environmental pollution. The partial nitritation - anammox (PN/A) process for nitrogen removal has been little investigated for hypersaline wastewaters (salinity greater than 3%). In the investigation presented here, single-stage versus two-stage partial nitritation - anammox (PN/A) reactor systems for deammonification at 4% (40 g/kg) saline conditions were investigated and compared in completely mixed fixed bed reactors.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how tiny living things (microbes) break down old stone structures around the world.
  • They found that different climates, like dry or humid, affect which types of bacteria are present on these stones.
  • Some microbes help convert chemicals, like ammonia and sulfur, which plays a big role in protecting and breaking down these ancient stones.
View Article and Find Full Text PDF

Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores.

View Article and Find Full Text PDF

The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs).

View Article and Find Full Text PDF

Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial metabolism in landfill leachate is key to breaking down organic pollutants like bisphenol A (BPA), though research on BPA degradation in these environments is limited.
  • A global study found high levels of BPA in landfill leachates and identified major BPA-degrading bacteria such as Proteobacteria, Firmicutes, and Bacteroidota across 113 sites.
  • The study highlights that these BPA degraders work together with other bacteria to also manage nitrogen and sulfur removal and methane breakdown, suggesting complex interactions that could inform future research on BPA and microbial communities in various environments.
View Article and Find Full Text PDF

Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves.

View Article and Find Full Text PDF
Article Synopsis
  • The installation of a protective shade at Beishiku Temple in Gansu Province led to a rapid increase in black and grey microbial spots, identified through advanced sequencing and environmental assessments.
  • The study found that the cyanobacteria phylum was the most dominant group responsible for the microbial deterioration, with Mastigocladopsis and Scytonema being the primary species in the observed spots.
  • Environmental changes post-installation—specifically lower temperatures and higher humidity—facilitated the rapid growth of these microorganisms, highlighting the need for effective conservation strategies for cultural heritage sites.
View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation.

View Article and Find Full Text PDF

Over the past decades, many forests have been converted to monoculture plantations, which might affect the soil microbial communities that are responsible for governing the soil biogeochemical processes. Understanding how reforestation efforts alter soil prokaryotic microbial communities will therefore inform forest management. In this study, the prokaryotic communities were comparatively investigated in a secondary Chinese fir forest (original) and a reforested Chinese fir plantation (reforested from a secondary Chinese fir forest) in Southern China.

View Article and Find Full Text PDF

To reveal the characteristics of indigenous microbiome including the pathogenic-related ones on Angkor monuments in Cambodia and the distribution pattern of resistome at different locations, several sites, namely Angkor Wat, Bayon of Angkor Thom, and Prasat Preah Vihear with different exposure levels to tourists were selected to conduct the metagenomic analysis in this study. The general characteristics of the microbiome on these monuments were revealed, and the association between the environmental geo-ecological feature and the indigenous microbiome was delineated. The most common microbial groups included 6 phyla, namely Acidobacteria, Actinobacteria, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia on the monuments, but Firmicutes and Chlamydiae were the most dominant phyla found in bats droppings.

View Article and Find Full Text PDF

Antibiotic pollution and the evolution of antibiotic resistance genes (ARGs) are increasingly viewed as major threats to both ecosystem security and human health, and have drawn attention. This study investigated the fate of antibiotics in aqueous and sedimentary substrates and the impact of ecosystem shifts between water and sedimentary phases on resistome profiles. The findings indicated notable variations in the concentration and distribution patterns of antibiotics across various environmental phases.

View Article and Find Full Text PDF

Understanding microbial migration and survival mechanisms in dust events (DEs) can elucidate genetic and metabolic exchange between environments and help predict the atmospheric pathways of ecological and health-related microbial stressors. Dust-borne microbial communities have been previously characterized, but the impact and interactions between potentially active bacteria within transported communities remain limited. Here, we analysed samples collected during DEs in Israel, using amplicon sequencing of the 16S rRNA genes and transcripts.

View Article and Find Full Text PDF

Landfill leachates are complex mixtures containing very high concentrations of biodegradable and recalcitrant toxic compounds. Understanding the major contaminant components and microbial community signatures in global landfill leachates is crucial for timely decision-making regarding contaminant management and treatment. Therefore, this study analyzed leachate data from 318 landfill sites primarily used for municipal solid waste disposal, focusing on their chemical and microbiological characteristics.

View Article and Find Full Text PDF

The alteration of antibiotic resistance genes (ARGs) in wastewater has been less studied in wastewater treatment plants (WWTPs), making it difficult to assess ARGs' spreading risk comprehensively. Therefore, this study investigated the distribution and reduction of ARGs in the main process (Anaerobic-Anoxic-Oxic with Membrane Bio-Reactor (A/O + MBR), Oxidation Ditch with sedimentation (OD), and Cyclic Activated Sludge System (CASS) with sedimentation) and disinfection process (Ultra-violet and Chlorination) of full-scale WWTPs. The wastewater was sampled before and after the different main process and disinfection process; then, the diversity and abundance of ARGs and mobile genetic genes (MGEs, helping the horizontal transfer of ARGs) in wastewater of different treatment stages were determined by a real-time high-throughput quantitative PCR (HT-qPCR) system.

View Article and Find Full Text PDF

The Angkor monuments have been registered on the World Cultural Heritage List of UNESCO, while the buildings built mostly of sandstone are suffering from serious deterioration and damage. Microorganisms are one of the leading causes for the sandstone deterioration. Identification of the mechanisms underlying the biodeterioration is of significance because it reveals the biochemical reaction involved so that effective conservation and restoration of cultural properties can be achieved.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored microbial diversity and biochemical potential of the sandstone microbiome at Beishiku Temple in Northwest China using metagenomics and metaproteomics.
  • Predominant microbial taxa showed resilience to harsh conditions, but also displayed sensitivity to environmental changes; distinct patterns in taxonomic and metabolic functions were observed between metagenomic and metaproteomic data.
  • Findings highlighted active geomicrobiological cycles, particularly in nitrogen and sulfur processes, suggesting that human activities like petrochemical development impact the microbiome and contribute to stone monument degradation.
View Article and Find Full Text PDF

Knowledge of biodeterioration and protection of cultural heritage depends on the scientific understanding of the substratum materials, the ambient environment, the fauna and flora including the microorganisms so an overall picture can be constructed to serve as a basis for protection and management. Over the past more than 20 years of survey and research, an accumulated dataset is available on the mechanisms on the (bio)deterioration of stone monuments in Cambodia, involving interactions among water cycling and salt dynamics with the presence of a rich surface microbiome, the biofilms. However, during the Covid-19 period (2020-2022), because of a drastic drop on tourist population, the number of bats and monkeys are on the rising, which have an impact on the on-going protection efforts.

View Article and Find Full Text PDF

Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment.

View Article and Find Full Text PDF

Deciphering biogeographic patterns of microorganisms is important for evaluating the maintenance of microbial diversity with respect to the ecosystem functions they drives. However, ecological processes shaping distribution patterns of microorganisms across large spatial-scale watersheds remain largely unknown. Using Illumina sequencing and multiple statistical methods, we characterized distribution patterns and maintenance diversity of microorganisms (i.

View Article and Find Full Text PDF

Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.

View Article and Find Full Text PDF

Epilithic biofilms colonising outdoor stone monuments can intensify the deterioration processes of the stone materials and pose great challenges to their protection. In this study, biodiversity and community structures of the epilithic biofilms colonising the surfaces of five outdoor stone dog sculptures were characterised by high-throughput sequencing. Although they are exposed to the same envrionment in a small yard, the analysis of their biofilm populations revealed high biodiversity and species richness as well as great differences in community compostions.

View Article and Find Full Text PDF

Microbial colonization on stone monuments leads to subsequent biodeterioration; determining the microbe diversity, compositions, and metabolic capacities is essential for understanding biodeterioration mechanisms and undertaking heritage management. Here, samples of epilithic biofilm and naturally weathered and exfoliated sandstone particles from different locations at the Beishiku Temple were collected to investigate bacterial and fungal community diversity and structure using a culture-based method. The biodeterioration potential of isolated fungal strains was analyzed in terms of pigmentation, calcite dissolution, organic acids, biomineralization ability, and biocide susceptibility.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are ubiquitous in O-perturbed aquifers, but their role in shaping ammonia-oxidizing microbial communities is not clear. This study examined the dynamic responses of ammonia-oxidizing microorganisms (AOMs) in redox-fluctuating aquifers to ROS via field investigation and in-lab verification using transcriptomes/ metatranscriptome and RT-qPCR. Ammonia-oxidizing archaea (AOA) dominated recharge aquifers with lower ROS levels, whereas ammonia-oxidizing bacteria (AOB) and heterotrophic nitrifying aerobic bacteria (HNB) predominated in discharge areas with higher ROS levels.

View Article and Find Full Text PDF